Proteome analysis of early somatic embryogenesis in Picea glauca



Forestry is a valuable natural resource for many countries. Rapid production of large quantities of genetically improved and uniform seedlings for restocking harvested lands is a key component of sustainable forest management programs. Clonal propagation through somatic embryogenesis has the potential to meet this need in conifers and can offer the added benefit of ensuring consistent seedling quality. Although in commercial use, mass production of conifers through somatic embryogenesis is relatively new and there are numerous biological unknowns regarding this complex developmental pathway. To aid in unravelling the embryo developmental process, two-dimensional electrophoresis was employed to quantitatively assess the expression levels of proteins across four stages of somatic embryo maturation in white spruce (0, 7, 21 and 35 days post abscisic acid treatment). Forty-eight differentially expressed proteins have been identified, which display a significant change in abundance as early as day 7 of embryo development. These proteins are involved in a variety of cellular processes, many of which have not previously been associated with embryo development. The identification of these proteins was greatly assisted by the availability of a substantial expressed sequence tag (EST) resource developed for white, sitka and interior spruce. The combined use of these spruce ESTs in conjunction with GenBank accessions for other plants improved the rate of protein identification from 38% to 62% when compared with GenBank alone using automated, high-throughput techniques. This underscores the utility of EST resources in a proteomic study of any species for which a genome sequence is unavailable.