• Leader;
  • Methionine;
  • Myristoylation;
  • Peptidase;
  • Positional proteomics


The vast majority of the proteins encoded in any genome naturally undergo a large number of different N-terminal modifications, hindering their characterization by routine proteomic approaches. These modifications are often irreversible, usually cotranslational and are crucial, as their occurrence may reflect or affect the status, fate and function of the protein. For example, large signal peptide cleavages and N-blocking mechanisms reflect targeting to various cell compartments, whereas N-ligation events tend to be related to protein half-life. N-terminal positional proteomic strategies hold promise as a new generation of approaches to the fine analysis of such modifications. However, further biological investigation is required to resolve problems associated with particular low-abundance or challenging N-terminal modifications. Recent progress in genomics and bioinformatics has provided us with a means of assessing the impact of these modifications in proteomes. This review focuses on methods for characterizing the occurrence and diversity of N-terminal modifications and for assessing their contribution to function in complete proteomes. Progress is being made towards the annotation of databases containing information for complete proteomes, and should facilitate research into all areas of proteomics.