• Ischemia;
  • Ischemic preconditioning;
  • Mouse;
  • Proteomics;
  • Reperfusion injury


Hepatic ischemia/reperfusion (I/R) injury is an inevitable consequence during liver surgery. Ischemic preconditioning (IPC) has been shown to protect the livers from I/R injury, partially mediated by preservation of hepatic ATP contents. However, the precise molecular mechanisms of these events remain poorly elucidated. In this study, liver proteomes of the mice subjected to I/R injury pretreated with or without IPC were analyzed using 2-DE combined with MALDI-TOF/TOF mass analysis. Twenty proteins showing more than 1.5-fold difference were identified in the livers upon I/R injury. Among these proteins, four proteins were further regulated by IPC when compared with nonpretreated controls. One of these proteins, ATP synthase β subunit (ATP5β) catalyzes the rate-limiting step of ATP formation. The expression level of ATP5β, which was further validated by Western blot analysis, was significantly decreased upon I/R injury while turned over by IPC pretreatment. Change pattern of hepatic ATP corresponded with that of ATP5β expression, indicating that increasing hepatic ATP5β expression might be a reason for ATP-preserving effect of IPC. In summary, this study provided new clues for understanding the mechanisms of IPC against I/R injury. The protective role of ATP5β might give evidences for developing new therapeutic approaches against hepatic I/R injury.