5 References

  • 1
    Haslam, S. M., Variation of population type in Phragmites communis Trin. Ann. Bot. 1970, 34, 147158.
  • 2
    Haslam, S. M., The performance of Phragmites communis Trin. In relation to temperature. Ann. Bot. 1975, 39, 881889.
  • 3
    Matoh, T., Matsushita, N., Takahashi, E., Salt tolerance of the reed plant Phragmites communis Trin. Physiol. Plant 1988, 72, 814.
  • 4
    Saltonstall, K., Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 2002, 99, 24452449.
  • 5
    Chambers, R. M., Meyerson, L. A., Saltonstall, K., Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Bot. 1999, 64, 261273.
  • 6
    Marks, M., Lapin, B., Randall, J., Phragmites australis (P. communis): threats, management and monitoring. Nat. Areas J. 1994, 14, 285294.
  • 7
    Shinozak, i. K., Yamaguchi-Shinozaki, K., Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 1996, 7, 161167.
  • 8
    Smirnoff, N., Plant resistance to environmental stress. Curr. Opin. Biotechnol. 1998, 9, 214219.
  • 9
    Cushman, J. C., Bohnert, H. J., Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 2000, 3, 117124.
  • 10
    Thomashow, M. F., So what's new in the field of plant cold acclimation? Lots! Plant Physiol. 2001, 125, 8993.
  • 11
    Zhu, J., Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol. 2001a, 4, 401406.
  • 12
    Zhu, J. K., Plant salt tolerance. Trends Plant Sci. 2001b, 6, 6671.
  • 13
    Zhu, J. K., Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247273.
  • 14
    Hazen, S. P., Wu, Y., Kreps, J. A., Gene expression profiling of plant responses to abiotic stress. Funct. Integr. Genomics 2003, 3, 105111.
  • 15
    Chaves, M. M., João, P. M., João, S. P., Understanding plant responses to drought – from genes to the whole plant. Funct. Plant Biol. 2003, 30, 239264.
  • 16
    Valliyodan, B., Nguyen, H. T., Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant. Biol. 2006, 9, 189195.
  • 17
    Chinnusamy, V., Zhu, J., Zhu, J. K., Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444451.
  • 18
    Leung, H., Stressed genomics – bring relief to rice fields. Curr. Opin. Plant Biol. 2008, 11, 201208.
  • 19
    Knight, H., Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 2000, 195, 269324.
  • 20
    Song, W. Y., Zhang, Z. B., Shao, H. B., Guo, X. L. et al., Relationship between calcium decoding elements and plant abiotic-stress resistance. Int. J. Biol. Sci. 2008, 4, 116125.
  • 21
    Seki, M., Narusaka, M., Abe, H., Kasuga, M. et al., Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 2001, 13, 6172.
  • 22
    Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T. et al., Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002, 130, 21292141.
  • 23
    Bray, E. A., Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 23312341.
  • 24
    Cui, S., Huang, F., Wang, J., Ma, X. et al., A proteomic analysis of cold stress responses in rice seedlings. Proteomics 2005b, 5, 31623172.
  • 25
    Timperio, A. M., Egidi, M. G., Zolla, L., Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J. Proteomics 2008, 71, 391411.
  • 26
    Perera, I. Y., Hung, C. Y., Moore, C. D., Stevenson-Paulik, J., Boss, W. F., Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell 2008, 20, 28762893.
  • 27
    Liu, Q., Kasuga, M., Sakuma, Y., Abe, H. et al., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 1998, 10, 13911406.
  • 28
    Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y. et al., Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 1882218827.
  • 29
    Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K. et al., Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007, 50, 5469.
  • 30
    Abe, H., Urao, T., Ito, T., Seki, M. et al., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 2003, 15, 6378.
  • 31
    Choi, H., Hong, J., Ha, J., Kang, J., Kim, S. Y., ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 2000, 275, 17231730.
  • 32
    Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D. et al., Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 2004, 16, 24812498.
  • 33
    Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490498.
  • 34
    Leung, J., Giraudat, J., Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 199222.
  • 35
    Himmelbach, A., Yang, Y., Grill, E., Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 2003, 6, 470479.
  • 36
    Forcat, S., Bennett, M. H., Mansfield, J. W., Grant, M. R., A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 2008, 4, 16.
  • 37
    Bray, E. A., Molecular responses to water deficit. Plant Physiol. 1993, 103, 10351040.
  • 38
    Leone, A., Costa, A., Tucci, M., Grillo, S., Comparative analysis of short- and long-term changes in gene expression caused by low water potential in potato (Solanum tuberosum) cell suspension cultures. Plant Physiol. 1994, 106, 703712.
  • 39
    Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L. et al., Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J. Biol. Chem. 2008, 283, 3419734203.
  • 40
    Mittler, R., Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 1519.
  • 41
    Molles Manuel, C., jr., Ecology: Concepts and Applications, The McGraw-Hill Companies, Inc., New York 2005.
  • 42
    Zhang, C. L., Chen, G. C., Study on gas exchange characteristics in different ecotypes of Phragmites communis growing in the Hexi corridor. Acta Ecol. Sin. 1991, 11, 250254.
  • 43
    Wang, H. L., Zhang, C. L., Liang, H. G., Seasonal changes of polyamines in habitat adaptation of different ecotypes of reed plants. Oecologia 1995a, 110, 119123.
  • 44
    Cui, S. X., Wang, W., Zhang, C. L., Plant regeneration from callus cultures in two ecotypes of reed (Phragmites communis Trinius). In Vitro Cell. Dev. Biol. 2002a, 38, 325329.
  • 45
    Ren, D. T., Zhang, C. L., Chen, G. C., Yang, H. L., Principal component anslysis and fuzzy cluster analysis for different ecotypes of reed (Phragmites communis Trin.) based on their indexes. Acta Ecol. Sin. 1994a, 14, 265273.
  • 46
    Cheng, Y. F., Pu, T. J., Xue, Y. B., Zhang, C. L., PcTGD, a highly expressed gene in stem, is related to water stress in reed (Phragmites communis Trin.) Chinese Sci. Bull. 2001, 46, 850854.
  • 47
    Chen, G. C., Zhang, C. L., Comparative studies on morphological character and anatomical structure of fibre in stalk of four distinct types of Phragmites communis Trin. J. Lanzhou University (Nat. Sci.) 1991, 27, 9198.
  • 48
    Zheng, X. P., Zhang, C. L., Chen, G. C., Investigation on the daptation of photosynthetic carbon metabolism pathway to environment of Phragmites communis in Hexi corridor of Gansu province. Acta Phytoecol. Geobotanica Sin. 1993, 17, 18.
  • 49
    Zheng, W. J., Wang, S., Zhang, C. L., A Study on the leaf structure of four reed ecotypes. Acta Botanica Sin. 1999, 41, 580584.
  • 50
    Zheng, W. J., zheng, X. P., Zhang, C. L., A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmaties australis in northwest China: leaf anatomy, ultrastructure, and activities of ribulose 1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase. Physiol. Plantarum 2000, 110, 201208.
  • 51
    Zhu, X. Y., Chen, G. C., Zhang, C. L., Photosynthetic electron transport, photophosphorylation and antioxidants in two ecotypes of reed (Phragmites communis Trin.) from different habitats. Photosynthetica 2001, 39, 183189.
  • 52
    Cui, S., Zhao, L., Zhao, M., He, W., Bi, Y., Tolerance of embryogenic suspension cultures from two Phragmites communis (reed) ecotypes to salt: changes of respiration pathway. Israel J. Plant Sci. 2005a, 53, 1118.
  • 53
    Gong, H., Chen, K., Chen, G., Zhao, Z. et al., Redox system in the plasma membranes of two ecotypes of reed (Phragmites communis Trin.) leaves from different habitats. Colloids SurfB Biointerfaces 2003, 32, 163168.
  • 54
    Gong, H., Chen, K., Gao, Y., Zhao, Z. et al., Antioxidant system in two ecotypes of reed (Phragmites communis) leaves from different habitats. Acta Bot Boreal Occident Sin. 2004, 2004, 193198.
  • 55
    Wang, H. L., Zhang, C. L., Seasonal changes of endogenous ABA and cytokinins in environmental adaptation of different ecotypes of reed plants. J. Environ. Sci. 1995b, 7, 449454.
  • 56
    Ren, D. T., Zhang, C. L., Seasonal changes of nucleic acid metabolism of different ecotypes of Phragmites communis in the corridor of Gansu hexi. Acta Botanica Sin. 1994b, 36, 385392.
  • 57
    Wang, H. L., Zhang, C. L., Comparative investigation on plasmolemma properties of different reed ecotypes in Hexi corridor. Acta Botanica Sin. 1993, 35, 533540.
  • 58
    Zhang, C. L., Zhou, R. L., Chen, G. C., Physio-ecological analysis on the capability of dehydration tolerance of Phragmites communis. Acta Phytoecol. Geobotanica Sin. 1992, 16, 311316.
  • 59
    Ren, D. T., Zhang, C. L., Analyses of soluble protein, total and free amino acids in leaves of different ecotypes of Phragmites communis growing in the Hexi corridor. Acta Botanica Sin. 1992, 34, 698704.
  • 60
    Chevalier, F., Martin, O., Rofidal, V., Devauchelle, A. D. et al., Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 2004, 4, 13721381.
  • 61
    Chen, K., Gong, H., Chen, G., Wang, S., Zhang, C., Up-regulation of glutathione metabolism and changes in redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats. J. Plant Physiol. 2003, 160, 293301.
  • 62
    Cui, S. X., Wang, W., Zhang, C. L., Changes of elements ratio of cultured cells from dune reed under adverse environmental conditions. Biol. Trace Elem. Res. 2002b, 87, 201210.
  • 63
    Zhao, L. Q., Zhang, F., Guo, J. K., Yang, Y. L. et al., Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol. 2004, 134, 849857.
  • 64
    Chen, K., Gong, H., Wang, S., Zhang, C., The regulation of the plasma membrane redox system and H+-transport in adaptation of reed ecotypes to their habitats. Biologia Plantarum 2004, 48, 8792.
  • 65
    Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248254.
  • 66
    Wessel, D., Flugge, U. I., A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141143.
  • 67
    Chen, Q. C., Sun, Y. W., Zhang, G. D., Observation in ecology-morphology and anatomical characteristic of the dominant plant populations in the middle-lower reaches of the Shule river. J. Lanzhou University (Nat. Sci.) 1961, 3, 6189.
  • 68
    Rossignol, M., Peltier, J. B., Mock, H. P., Matros, A. et al., Plant proteome analysis: a 2004–2006 update. Proteomics 2006, 6, 55295548.
  • 69
    Hajheidari, M., Eivazi, A., Buchanan, B. B., Proteomics uncovers a role for redox in drought tolerance in wheat. J. Proteome Res. 2007, 6, 14511460.
  • 70
    Bevan, M., Bancroft, I., Bent, E., Love, K. et al., Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 1998, 391, 485488.
  • 71
    Catusse, J., Strub, J. M., Job, C., Van Dorsselaer, A., Job, D., Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc. Natl. Acad. Sci. USA 2008, 105, 1026210267.
  • 72
    Plomion, C., Lalanne, C., Claverol, S., Meddour, H. et al., Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 2006, 6, 65096527.
  • 73
    Wickner, S., Maurizi, M. R., Gottesman, S., Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286, 18881893.
  • 74
    DeLille, J. M., Sehnke, P. C., Ferl, R. J., The Arabidopsis 14-3-3 family of signaling regulators. Plant Physiol. 2001, 126, 3538.
  • 75
    Zhu, X., Wang, S., zhang, C., Responses of different ecotypes of reed growing in the Hexi corridor to natural drought and salinity. Commun. Plant Physiol. 2003, 39, 371376.
  • 76
    Noctor, G., Foyer, C. H., Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249279.
  • 77
    Pastori, G. M., Kiddle, G., Antoniw, J., Bernard, S. et al., Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 2003, 15, 939951.
  • 78
    Ross, S. J., Findlay, V. J., Malakasi, P., Morgan, B. A., Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell. 2000, 11, 26312642.
  • 79
    Jarrillo, J. A., Leyva, A., Salinas, J., Martinez-Zapater, J. M., Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant. Plant Physiol. 1993, 101, 833837.
  • 80
    Parry, M. A., Andralojc, P. J., Mitchell, R. A., Madgwick, P. J., Keys, A. J., Manipulation of Rubisco: the amount, activity, function and regulation. J. Exp. Bot. 2003, 54, 13211333.
  • 81
    Spreitzer, R. J., Salvucci, M. E., Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol. 2002, 53, 449475.
  • 82
    Koller, A., Washburn, M. P., Lange, B. M., Andon, N. L. et al., Proteomic survey of metabolic pathways in rice. Proc. Natl. Acad. Sci. USA 2002, 99, 1196911974.
  • 83
    Zhao, C., Wang, J., Cao, M., Zhao, K. et al., Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics 2005, 5, 961972.
  • 84
    Agrawal, G. K., Rakwal, R., Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom. Rev. 2006, 25, 153.
  • 85
    Donnelly, B. E., Madden, R. D., Ayoubi, P., Porter, D. R., Dillwith, J. W., The wheat (Triticum aestivum L.) leaf proteome. Proteomics 2005, 5, 16241633.
  • 86
    Riccardi, F., Gazeau, P., de Vienne, D., Zivy, M., Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol. 1998, 117, 12531263.
  • 87
    Vincent, D., Lapierre, C., Pollet, B., Cornic, G. et al., Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol. 2005, 137, 949960.
  • 88
    Giavalisco, P., Nordhoff, E., Kreitler, T., Klöppel, K. D. et al., Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics 2005, 5, 19021913.
  • 89
    May, M. J., Vernoux, T., Leaver, C., Van Montagu, M., Inze, D., Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 1998, 49, 649667.
  • 90
    Pastori, G. M., Foyer, C. H., Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol. 2002, 129, 460468.
  • 91
    Hartl, F. U., Molecular chaperones in cellular protein folding. Nature 1996, 381, 571579.
  • 92
    Schiltz, S., Gallardo, K., Huart, M., Negroni, L. et al., Proteome reference maps of vegetative tissues in Pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol. 2004, 135, 120.
  • 93
    Reddy, A. R., Chaitanya, K. V., Vivekanandan, M., Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 11891202.
  • 94
    Momcilovic, I., Ristic, Z., Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant developmen. J. Plant Physiol. 2007, 164, 9099.
  • 95
    Ristic, Z., Bukovnik, U., Momcilović, I., Fu, J., Vara Prasad, P. V., Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J. Plant Physiol. 2008, 165, 192202.
  • 96
    Fu, J., Momcilovic, I., Clemente, T. E., Nersesian, N. et al., Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol. Biol. 2008, 68, 277288.
  • 97
    Larrainzar, E., Wienkoop, S., Weckwerth, W., Ladrera, R. et al., Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol. 2007, 144, 14951507.
  • 98
    Shimaoka, T., Miyake, C., Yokota, A., Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts. Eur. J. Biochem. 2003, 270, 921928.
  • 99
    Betti, M., Petrucco, S., Bolchi, A., Dieci, G., Ottonello, S., A plant 3′-phosphoesterase involved in the repair of DNA strand breaks generated by oxidative damage. J. Biol. Chem. 2001, 276, 1803818045.
  • 100
    Wang, J. G., Zhang, C. L., DNA damage and repair of two ecotypes of Phragmites communis subjected to water stress. Acta Botanica Sin. 2001, 43, 490494.