Proteome changes in auricular lymph nodes and serum after dermal sensitization to toluene diisocyanate in mice


Correspondence: Dr. Jeroen Vanoirbeek, KU Leuven, Department of Public Health, Occupational, Environmental and Insurance Medicine, Herestraat 49 mailbox 706, B-3000 Leuven, Belgium


Fax: +32 16 33 08 06


Some reactive chemicals, such as diisocyanates, are capable of initiating an allergic response, which can lead to occupational asthma after a latency period. Clinical symptoms such as cough, wheezing, and dyspnea occur only late, making it difficult to intervene at an early stage. So far, most studies using proteomics in lung research have focused on comparisons of healthy versus diseased subjects. Here, using 2D-DIGE, we explored proteome changes in the local draining lymph nodes and serum of mice dermally sensitized once or twice with toluene-2,4-diisocyanate (TDI) before asthma is induced. In the lymph nodes, we found 38 and 58 differentially expressed proteins after one and two treatments, respectively, between TDI-treated and vehicle-treated mice. In serum, seven and 16 differentially expressed proteins were detected after one and two treatments, respectively. We identified 80–85% of the differentially expressed proteins by MS. Among them, lymphocyte-specific protein-1, coronin 1a, and hemopexin were verified by Western blotting or ELISA in an independent group of mice. This study revealed alterations in the proteomes early during sensitization in a mouse model before the onset of chemical-induced asthma. If validated in humans, these changes could lead to earlier diagnosis of TDI-exposed workers.