• 1
    Love, B., in Predki, P. F. (Ed.), The Analysis of Protein Arrays in Functional Protein Microarrays in Drug Discovery, CRC Press, USA 2007, pp. 381402.
  • 2
    Sboner, A., Karpikov, A., Chen, G., Smith, M. et al., Robust-linear-model normalization to reduce technical variability in functional protein microarrays. J. Proteome Res. 2009, 8, 54515464.
  • 3
    Chen, S., Le, W. D., Xie, W. J., Alexianu, M. E. et al., Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch. Neurol. 1998, 55, 10751080.
  • 4
    R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria 2011.
  • 5
    Smyth, G. K., Limma: linear models for microarray data, in: Gentleman, R., Carey, V., Dudoit, S., Irizarry, R., Huber, W. (Eds.), Bioinformatics and Computational Biology Solutions using R and Bioconductor, Springer, New York 2005, pp. 397420.
  • 6
    Chen, C., Grennan, K., Badner, J., Zhang, D. et al., Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 2011, 6, e17238.
  • 7
    Rudy, J., Valafar, F., Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics 2011, 12, 467.
  • 8
    Han, M., Nagele, E., Demarshall, C., Acharya, N., Nagele, R., Diagnosis of Parkinson's disease based on disease-specific autoantibody profiles in human sera. PLoS One 2012, 7, e32383.
  • 9
    Nagele, E., Han, M., Demarshall, C., Belinka, B., Nagele, R., Diagnosis of Alzheimer's disease based on disease-specific autoantibody profiles in human sera. PLoS One 2011, 6, e23112.
  • 10
    Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 25072517.
  • 11
    Guyon, I., Elisseeff, A., An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 11571182.
  • 12
    Kohavi R., John, G., Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273324.
  • 13
    Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA 1989.
  • 14
    Breiman, L., Random forests. Mach. Learn. 2001, 45, 532.
  • 15
    Liaw, A. W. M., Classification and regression by randomForest. R News 2002, 2, 1822.