6 References

  • 1
    Baeuerlein, E., in: Baeuerlein, E. (Ed.), Handbook of Biomineralization—Biological Aspects and Structure Formation, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany 2007, pp. 119.
  • 2
    Killian, C. E., Wilt, F. H., Molecular aspects of biomineralization of the echinoderm endoskeleton. Chem. Rev. 2008, 108, 44634474.
  • 3
    Marin, F., Luquet, G., Marie, B., Médakovic, D., Molluscan shell protein: primary structure, origin and evolution. Curr. Top. Dev. Biol. 2008, 80, 209276.
  • 4
    Marin, F., Marie, B., Benhamada, S., Silva, P., et al., ‘Shellome’: proteins involved in mollusk shell biomineralization – diversity, functions, in: Watabe, S., Maeyama, K., Nagasawa, H. (Eds.), Recent Advances in Pearl Research, Terrapub, Tokyo, Japan 2013, pp. 149166.
  • 5
    Mann, K., Wilt, F. H., Poustka, A. J., Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci. 2010, 8, 33.
  • 6
    Marie, B., Marie, A., Jackson, D., Dubost, L. et al., Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci. 2010, 8, 54.
  • 7
    Joubert, C., Piquemal, D., Marie, B., Manchon, L. et al., Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 2010, 11, 613.
  • 8
    Berland, S., Marie, A., Duplat, D., Milet, C. et al., Coupling proteomics and transcriptomics for the identification of novel and variant forms of mollusc shell proteins: a study with P. margaritifera. Chembiochem. 2011, 12, 950961.
  • 9
    Mann, K., Edsinger-Gonzales, E., Mann, M., In-depth proteomic analysis of mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Sci. 2012, 10, 28.
  • 10
    Marie, B., Joubert, C., Tayalé, A., Zanella-Cléon, I. et al., Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 2098620991.
  • 11
    Zhang, G., Fang, X., Guo, X., Li, L. et al., The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 4954.
  • 12
    Marie, B., Jackson, D. J., Ramos-Silva, P., Zanella-Cléon, I. et al., The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J. 2013, 280, 214232.
  • 13
    Ramos-Silva, P., Kaandorp, J., Huisman, L., Marie, B. et al., The skeletal organic matrix of the coral Acropora millepora: the evolution of calcification by cooption and domain shuffling. Mol. Biol. Evol. 2013, 30, 20992112.
  • 14
    Drake, J. L., Mass, T., Haramaty, L., Zelzion, E. et al., Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 37883793.
  • 15
    Ramos-Silva, P., Marin, F., Kaandorp, J., Marie, B., “Biomineralization toolkit”: the importance of sample cleaning prior to the characterization of biomineral proteomes. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E2144E2146.
  • 16
    Kang, Y-J., Stevenson, A. K., Yau, P. M., Kollmar, R., Sparc protein is required for normal growth of zebrafish otoliths. JARO 2007, 9, 436451.
  • 17
    Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953971.
  • 18
    Hincke, M. T., Nys, Y., Gautron, J., Mann, K. et al., The eggshell: structure, composition and mineralization. Front. Biosci. 2012, 17, 12661280.
  • 19
    Pokroy, B., Fitch, A.N., Marin, F., Kapon, M. et al., Anisotropic lattice distorsions in biogenic calcite induced by intra-crystalline organic molecules. J. Struct. Biol. 2006, 155, 96103.
  • 20
    Rahman, M. A., Shinjo, R., Oomori, T., Wörheide, G., Analysis of the proteinaceous components of the organic matrix of calcitic sclerites from the soft coral Sinularia sp. PLoS One 2013, 8, e58781.
  • 21
    Nemoto, M., Wang, Q., Li, D., Pan, S. et al., Proteomic analysis from the mineralized radular teeth of the giant Pacific chiton, Cryptochiton stelleri (Mollusca). Proteomics 2012, 12, 28902894.
  • 22
    Le Campion-Alsumard, T., Golubic, S., Hutchings, P., Microbial endoliths in skeleton of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar. Ecol. Prog. Ser. 1995, 117, 149157.
  • 23
    Gaffey, S. J., Bronniman, C. E., Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sed. Petrol. 1993, 63, 752754.
  • 24
    Bédouet, L., Marie, A., Berland, S., Marie, B. et al., Proteomic strategy for identifying mollusc shell proteins using mild chemical degradation and trypsin digestion of insoluble organic shell matrix: a pilot study on Haliotis tuberculata. Mar. Biotechnol. 2011, 14, 446458.
  • 25
    Marie, A., Alves, S., Marie, B., Dubost, L. et al., Analysis of low complex region peptides derived from mollusc shell matrix proteins using CID, high-energy collisional dissociation, and electron transfer dissociation on an LTQ-Orbitrap: implications for peptide to spectrum match. Proteomics 2012, 12, 30693075.