SEARCH

SEARCH BY CITATION

Abstract

The plasma polymerization of allylamine in an inductively coupled rf plasma reactor is analyzed by Fourier transform infrared spectroscopy. Comparison of the infrared spectra of the as-received monomer and the plasma polymerized film reveals a conversion of the primary amine in the monomer ([BOND]CH2[BOND]NH2) to an imine ([BOND]CH[DOUBLE BOND]NH) and a nitrile (C[TRIPLE BOND]N). Plasma polymerization of ethylenediamine yields the same results, suggesting that this polymerization scheme may be typical of primary amines. Increasing the plasma power seems to increase the proportion of nitrile groups in relation to the imine groups. The infrared spectra of the vapor phase polymerized monomer was similar to that of the substrate-grafted allylamine film implying a similar structure. Aging of this vapor phase polymer at 120°C for 1 h in vacuum and at 295°C for 15 min in an oxygen free environment reveals nitrile group reaction similar to that observed in polyacrylonitrile. Thermogravimetric analyses of the vapor phase polymers in a nitrogen atmosphere at 20°C/min demonstrated the thermal stability, with the polymer produced at a plasma power level of 50 W retaining 20% of its weight at 1000°C. This was better than the stability shown by the polymer produced at 150 W and is attributed to the ease of nitrile group polymerization in the former.