Get access

Polymerization of cyclopentadiene initiated by methylaluminoxane

Authors


Abstract

The polymerization of cyclopentadiene (CPD) was effectively initiated by methylaluminoxane (MAO) to generate poly(cyclopentadiene) (polyCPD). The effects on the polymerization of some reaction parameters such as the monomer concentration, the initiator concentration, and solvents were investigated. The conversion of CPD was monitored with gas chromatography to investigate the reaction kinetics. The polymerization rate was proportional to the concentrations of MAO in the first order and of the CPD monomer in the second order, and a reasonable cationic polymerization mechanism was suggested on the basis of the kinetic study. PolyCPD obtained at a low temperature could be dissolved in toluene or chloroform, and this indicated lower cross-coupling during the polymerization reaction. 1H NMR and IR analysis of the polymer indicated that there were almost equal amounts of 1,2-enchainment and 1,4-enchainment in the polymer chain. The measurement of polyCPD showed its unique properties as a potential candidate for stable wrappings or electronic packaging materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 264–272, 2006

Ancillary