SEARCH

SEARCH BY CITATION

Keywords:

  • block copolymers;
  • poly(L-lactic acid);
  • polyphosphoester;
  • ring-opening polymerization;
  • self-assembly

Abstract

Aliphatic polyesters and polyphosphoesters (PPEs) have received much interest in medical applications due to their favorable biocompatibility and biodegradability. In this work, novel amphiphilic triblock copolymers of PPE and poly(L-lactic acid) (PLLA) with various compositions were synthesized and characterized. The blocky structure was confirmed by GPC analyses. These triblock copolymers formed micelles composed of hydrophobic PLLA core and hydrophilic PPE shell in aqueous solution. Critical micellization concentrations of these triblock copolymers were related to the polymer compositions. Incubation of micelles at neutral pH followed by GPC analyses revealed that these polymer micelles were hydrolysized and resulted in decreased molecular weights and small oligomers, whereas its degradation in basic and acid mediums was accelerated. MTT assay also demonstrated the biocompatibility against HEK293 cells. These biodegradable polymers are potential as drug carriers for biomedical application. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6425–6434, 2008