Synthesis and characterization of novel low-bandgap triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics



A series of novel low-bandgap triphenylamine-based conjugated polymers (PCAZCN, PPTZCN, and PDTPCN) consisting of different electron-rich donor main chains (N-alkyl-2,7-carbazole, phenothiazine, and cyclopentadithinopyrol, respectively) as well as cyano- and dicyano-vinyl electron-acceptor pendants were synthesized and developed for polymer solar cell applications. The polymers covered broad absorption spectra of 400–800 nm with narrow optical bandgaps ranging 1.66–1.72 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers measured by cyclic voltammetry were found in the range of −5.12 to −5.32 V and −3.45 to −3.55 eV, respectively. Under 100 mW/cm2 of AM 1.5 white-light illumination, bulk heterojunction photovoltaic devices composing of an active layer of electron-donor polymers (PCAZCN, PPTZCN, and PDTPCN) blended with electron-acceptor [6,6]-phenyl-C61-butyric acid methyl ester or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The photovoltaic device containing donor PCAZCN and acceptor PC71BM in 1:2 weight ratio showed the highest power conversion efficiency of 1.28%, with Voc = 0.81 V, Jsc = 4.93 mA/cm2, and fill factor = 32.1%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010