Polymer-based fluoride-selective chemosensor: Synthesis, sensing property, and its use for the design of molecular-scale logic devices

Authors

  • Wei Lu,

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
    Search for more papers by this author
  • Dan Chen,

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
    Search for more papers by this author
  • Han Jiang,

    1. School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
    Search for more papers by this author
  • Liming Jiang,

    Corresponding author
    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
    • MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
    Search for more papers by this author
  • Zhiquan Shen

    1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
    Search for more papers by this author

Errata

This article is corrected by:

  1. Errata: Erratum: Polymer-based fluoride-selective chemosensor: Synthesis, sensing property, and its use for the design of molecular-scale logic devices Volume 50, Issue 18, 3922, Article first published online: 4 June 2012

Abstract

A new styryl-type monomer, 2-(4-vinylbenzyloxy)-1-naphthaldehyde thiosemicarbazone (VNT), was synthesized and then copolymerized with methyl methacrylate (MMA) by reversible addition fragmentation chain transfer polymerization affording a series of poly(MMA-co-VNT)s with different functional unit content, predetermined molecular weight, and narrow molecular-weight distribution. The desired copolymers were structurally confirmed by various spectroscopic characterizations. Colorimetric and fluorescent titration spectra revealed that the copolymers are highly selective toward fluoride anions over other competitive species including Cl, Br, I, H2PO4, AcO, and HSO4. On addition of F, a remarkable colorless-to-yellow color change is easily observed by naked eyes. The influence of the copolymer composition and molecular weight on its sensing capacity was then carefully investigated. The results showed that higher VNT-incorporation amount within the copolymer chains leads to higher sensitivity toward F ions. Interestingly, the chromogenic process of the polymeric sensor can be switched back and forth by successively adding F and HSO4 anions into the dimethyl sulfoxide solution of the polymer, which may be represented by a complementary “IMPLICATION/INHIBIT” logic gate at molecular level using both the ions as the chemical inputs. Based on such a reversible and reproducible sensing system, we designed a molecular-scale sequential information processing circuit displaying “writing–reading–erasing–reading” behavior and “multiwrite” function in the form of binary logic. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Ancillary