Statistical fluorinated copolymers from heterogeneous atom transfer radical copolymerization of styrene and 2,2,2-trifluoroethyl methacrylate with similar reactivity ratios

Authors


Abstract

Fluorinated copolymers with statistical structure of azeotropic or gradient composition were prepared from heterogeneous atom transfer radical copolymerizations of styrene (S) and 2,2,2-trifluoroethyl methacrylate (T). The polymerization kinetic studies show that while the propagation rate constant of S increased with a decreasing S content in the comonomer feed ratio, the propagation rate of T decreased with decreases of the S content in the comonomer feed ratio. The polymerization rate and controllability of the heterogeneous ATRP of S and T were regulated by the solubility of Cu(II)/ligand in the reaction mixture, based on a mechanistic analysis and solubility tests of the Cu(II)/ligand system in the reaction media. The reactivity ratios of S and T were 0.22 and 0.35, as evaluated from kinetic analysis of monomer conversions higher than 35%. These statistical polymers self-assembled in T to form giant vesicles GVs) with broad diameter distribution in the range of 1–10 μm. Unlike the methods normally used to prepare gradient copolymers by spontaneous controlling with feeding model or batch polymerization of comonomers with obvious differences in the reactivity ratio, in this contribution, we report a novel synthetic strategy for preparing gradient copolymers can also be prepared from both monomers with very similar reactivity ratio. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

Ancillary