SEARCH

SEARCH BY CITATION

Keywords:

  • differential scanning calorimetry (DSC);
  • electron microscopy;
  • lamellar crystallization;
  • poly(propylene)(PP);
  • spherulites

Abstract

Of the three melting peaks typical of a propylene–ethylene random copolymer (with 5.1 wt % ethylene) crystallized between 110 and 140 °C, the two higher peaks result from primary and secondary isothermal crystallization, whereas the material crystallized on cooling gives the lowest peak. In contrast to polypropylene homopolymers, which show strong morphological changes developing from the center of a spherulite, copolymer specimens are uniformly crosshatched. The highest melting peak is related to an open crosshatched framework of primary lamellae, and the next lower peak is related to later forming subsidiary lamellae filling the intervening space. The origin and nature of these double peaks are discussed in terms of the fractional crystallization and the ensuing constraints placed on isothermal lamellar thickening as a result of the exclusion of the comonomer from the polypropylene lattice. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3318–3332, 2004