Diffusion, evaporation, and surface enrichment of a plasticizing additive in an annealed polymer thin film



We present the first measurements of the simultaneous diffusion, surface enhancement, and evaporation of a plasticizer from a polymer, thin-film matrix using neutron reflection techniques. The reflectivity profiles as a function of the annealing time at an elevated temperature yield the time-dependent, plasticizer volume fraction profiles in a polyester–polyurethane (Estane) film. Thin, plasticizer-enriched layers form at both the polymer/substrate and polymer/air interfaces for annealed and unannealed samples. The diffusion equations for a material diffusing through a film and then evaporating into a vacuum at the free surface describe the loss of the plasticizer from the film for annealed samples. The loss of the plasticizer from the film is not limited by the movement of the plasticizer through the polymer matrix but is dominated by the plasticizer's rate of evaporation from the surface. The rate of evaporation and the volume fraction profiles for the plasticizer at the substrate interface are both consistent with surface attractions dominating over bulk attractions between the miscible plasticizer and the polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3258–3266, 2004