SEARCH

SEARCH BY CITATION

Keywords:

  • dewetting instability;
  • interfaces;
  • polystyrene;
  • thin films;
  • viscoelasticity

Abstract

Thin films of fluids are playing a leading role in countless natural and industrial processes. Here we study the stability and dewetting dynamics of viscoelastic polymer thin films. The dewetting of polystyrene close to the glass transition reveals unexpected features: asymmetric rims collecting the dewetted liquid and logarithmic growth laws that we explain by considering the nonlinear velocity dependence of friction at the fluid/solid interface and by evoking residual stresses within the film. Systematically varying the time so that films were stored below the glass-transition temperature, we studied simultaneously the probability for film rupture and the dewetting dynamics at early stages. Both approaches proved independently the significance of residual stresses arising from the fast solvent evaporation associated with the spin-coating process. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3022–3030, 2006