Advertisement

Recent progress on polymer dynamics by neutron scattering: From simple polymers to complex materials

Authors

  • Juan Colmenero,

    Corresponding author
    1. Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
    2. Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
    • Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
    Search for more papers by this author
  • Arantxa Arbe

    1. Centro de Física de Materiales (CSIC-UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
    Search for more papers by this author

Abstract

The recent (from 2010 onward) contributions of quasielastic neutron scattering techniques (time of flight, backscattering, and neutron spin echo) to the characterization and understanding of dynamical processes in soft materials based on polymers are analyzed. The selectivity provided by the combination of neutron scattering and isotopic—in particular, proton/deuterium—labeling allows the isolated study of chosen molecular groups and/or components in a system. This opportunity, together with the capability of neutrons to provide space/time resolution at the relevant length scales in soft matter, allows unraveling the nature of the large variety of molecular motions taking place in materials of increasing complexity. As a result, recent relevant works can be found dealing with dynamical process which associated characteristic lengths and nature are as diverse as, for example, phenyl motions in a glassy linear homopolymer like polystyrene and the chain dynamics of a polymer adsorbed on dispersed clay platelets. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013

Ancillary