Get access

The influence of bending on the performance of flexible carbon black/polymer composite gas sensors

Authors


Abstract

The performance of electronics on flexible substrates suffers under substrate bending leading to reduced device performance. In this article, we highlighted the influence of bending strain on a conductive polymer composite gas sensor and developed a model to investigate the influence of strain. We evaluated the strain influence on the resistance of a gas sensor with respect to sensitivity, filler content, cyclic loading, and electrode orientation. The sensitivity of gas sensors increased with decreasing tensile bending radii. The influence of strain was dominant for gas sensors with less carbon black concentration. Cyclic bending tests showed a decrease of sensor resistance versus time and a plastic deformation. A sensor geometry orientations effect to reduce the sensitivity to bending strain was achieved by aligning the electrode fingers parallel to the strain. A model was successfully implemented to simulate strain influences inside the polymer incorporating the Poisson ratio. We suggest a concept to achieve a strain insensitive gas sensor by creating an orientation between single particles inside the composite. Implementing this results into existing gas sensors will improve the measurement quality and reliability of sensors on flexible substrates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013

Get access to the full text of this article

Ancillary