5 References

  • 1
    Ito, S., Hayama, K., Hirabayashi, J., Enrichment strategies for glycopeptides. Methods Mol. Biol. 2009, 534, 195203.
  • 2
    Gu, J., Taniguchi, N., Regulation of integrin functions by N-glycans. Glycoconj. J. 2004, 21, 915.
  • 3
    Wong, C. H., Protein glycosylation: new challenges and opportunities. J. Org. Chem. 2005, 70, 42194225.
  • 4
    Isaji, T., Gu, J., Nishiuchi, R., Zhao, Y. et al., Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J. Biol. Chem. 2004, 279, 1974719754.
  • 5
    Ono, M., Handa, K., Withers, D. A., Hakomori, S., Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: a preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem. Biophys. Res. Commun. 2000, 279, 744750.
  • 6
    Bruckner, K., Perez, L., Clausen, H., Cohen, S., Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000, 406, 411415.
  • 7
    Zheng, M., Fang, H., Hakomori, S., Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. J. Biol. Chem. 1994, 269, 1232512331.
  • 8
    Axford, J. S., Cunnane, G., Fitzgerald, O., Bland, J. M. et al., Rheumatic disease differentiation using immunoglobulin G sugar printing by high density electrophoresis. J. Rheumatol. 2003, 30, 25402546.
  • 9
    Holland, M., Yagi, H., Takahashi, N., Kato, K. et al., Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim. Biophys. Acta 2006, 1760, 669677.
  • 10
    Lowe, J. B., Marth, J. D., A genetic approach to Mammalian glycan function. Annu. Rev. Biochem. 2003, 72, 643691.
  • 11
    Wang, Z., Hart, G. W., Glycomic Approaches to Study GlcNAcylation: Protein Identification, Site-mapping, and Site-specific O-GlcNAc Quantitation. Clin. Proteomics 2008, 4, 513.
  • 12
    Varki, A., Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993, 3, 97130.
  • 13
    Fares, F., The role of O-linked and N-linked oligosaccharides on the structure-function of glycoprotein hormones: development of agonists and antagonists. Biochim. Biophys. Acta 2006, 1760, 560567.
  • 14
    Xin, L., Li, M., Jianjun, L., Recent developments in the enrichment of glycopeptides for glycoproteomics. Anal. Lett. 2008, 41, 10.
  • 15
    Wuhrer, M., Catalina, M. I., Deelder, A. M., Hokke, C. H., Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2007, 849, 115128.
  • 16
    Cummings, R. D., Kornfeld, S., Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem. 1982, 257, 1123511240.
  • 17
    Hirabayashi, J., Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J. 2004, 21, 3540.
  • 18
    Sharon, N., Lis, H., Lectins as cell recognition molecules. Science 1989, 246, 227234.
  • 19
    Wiener, M. C., van Hoek, A. N., A lectin screening method for membrane glycoproteins: application to the human CHIP28 water channel (AQP-1). Anal. Biochem. 1996, 241, 267268.
  • 20
    Bundy, J. L., Fenselau, C., Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. Anal. Chem. 2001, 73, 751757.
  • 21
    Xiong, L., Andrews, D., Regnier, F., Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J. Proteome Res. 2003, 2, 618625.
  • 22
    Bunkenborg, J., Pilch, B. J., Podtelejnikov, A. V., Wisniewski, J. R., Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004, 4, 454465.
  • 23
    Ghosh, D., Krokhin, O., Antonovici, M., Ens, W. et al., Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J. Proteome Res. 2004, 3, 841850.
  • 24
    Mechref, Y., Zidek, L., Ma, W., Novotny, M. V., Glycosylated major urinary protein of the house mouse: characterization of its N-linked oligosaccharides. Glycobiology 2000, 10, 231235.
  • 25
    Yamamoto, K., Tsuji, T., Osawa, T., Analysis of asparagine-linked oligosaccharides by sequential lectin-affinity chromatography. Methods Mol. Biol. 1998, 76, 3551.
  • 26
    Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T. et al., Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 2003, 21, 667672.
  • 27
    Yang, Z., Hancock, W. S., Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A 2004, 1053, 7988.
  • 28
    Wang, Y., Wu, S. L., Hancock, W. S., Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap--Fourier transform mass spectrometry. Glycobiology 2006, 16, 514523.
  • 29
    Madera, M., Mechref, Y., Novotny, M. V., Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal. Chem. 2005, 77, 40814090.
  • 30
    Madera, M., Mechref, Y., Klouckova, I., Novotny, M. V., Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry. J. Proteome Res. 2006, 5, 23482363.
  • 31
    Zhang, H., Li, X. J., Martin, D. B., Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 2003, 21, 660666.
  • 32
    Tian, Y., Zhou, Y., Elliott, S., Aebersold, R., Zhang, H., Solid-phase extraction of N-linked glycopeptides. Nat. Protoc. 2007, 2, 334339.
  • 33
    Tian, Y., Kelly-Spratt, K. S., Kemp, C. J., Zhang, H., Indentification of glycoproteins from mouse skin tumors and plasma. Clin. Proteom. 2008.
  • 34
    Chen, R., Jiang, X., Sun, D., Han, G. et al., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res. 2009, 8, 651661.
  • 35
    Pan, S., Wang, Y., Quinn, J. F., Peskind, E. R. et al., Identification of glycoproteins in human cerebrospinal fluid with a complementary proteomic approach. J. Proteome Res. 2006, 5, 27692779.
  • 36
    McDonald, C. A., Yang, J. Y., Marathe, V., Yen, T. Y., Macher, B. A., Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell Proteomics 2009, 8, 287301.
  • 37
    Lee, A., Kolarich, D., Haynes, P. A., Jensen, P. H. et al., Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J. Proteome Res. 2009, 8, 770781.
  • 38
    Sparbier, K., Koch, S., Kessler, I., Wenzel, T., Kostrzewa, M., Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J. Biomol. Tech. 2005, 16, 407413.
  • 39
    Sparbier, K., Wenzel, T., Kostrzewa, M., Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2006, 840, 2936.
  • 40
    Xu, Y., Wu, Z., Zhang, L., Lu, H. et al., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal. Chem. 2009, 81, 503508.
  • 41
    Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., Roepstorff, P., A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res. 2004, 3, 556566.
  • 42
    Alvarez-Manilla, G., Atwood 3rd, J., Guo, Y., Warren, N. L. et al., Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J. Proteome Res. 2006, 5, 701708.
  • 43
    Helenius, A., Aebi, M., Intracellular functions of N-linked glycans. Science 2001, 291, 23642369.
  • 44
    Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A., Dwek, R. A., Glycosylation and the immune system. Science 2001, 291, 23702376.
  • 45
    Bertozzi, C. R., Kiessling, L. L., Chemical glycobiology. Science 2001, 291, 23572364.
  • 46
    Cloos, P. A., Christgau, S., Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 2004, 5, 139158.
  • 47
    O'Donnell, N., Intracellular glycosylation and development. Biochim. Biophys. Acta 2002, 1573, 336345.
  • 48
    Glinsky, G. V., Antigen presentation, aberrant glycosylation and tumor progression. Crit. Rev. Oncol. Hematol. 1994, 17, 2751.
  • 49
    Hakomori, S., Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996, 56, 53095318.
  • 50
    Dennis, J. W., Granovsky, M., Warren, C. E., Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1999, 1473, 2134.
  • 51
    Couldrey, C., Green, J. E., Metastases: the glycan connection. Breast Cancer Res. 2000, 2, 321323.
  • 52
    Hakomori, S., Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 2001, 491, 369402.
  • 53
    Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A., Wormald, M. R., Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 2004, 14, 103114.
  • 54
    Hongsachart, P., Huang-Liu, R., Sinchaikul, S., Pan, F. M. et al., Glycoproteomic analysis of WGA-bound glycoprotein biomarkers in sera from patients with lung adenocarcinoma. Electrophoresis 2009, 30, 12061220.
  • 55
    Soltermann, A., Ossola, R., Kilgus-Hawelski, S., von Eckardstein, A. et al., N-glycoprotein profiling of lung adenocarcinoma pleural effusions by shotgun proteomics. Cancer 2008, 114, 124133.
  • 56
    Qiu, Y., Patwa, T. H., Xu, L., Shedden, K. et al., Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J. Proteome Res. 2008, 7, 16931703.
  • 57
    Ueda, K., Fukase, Y., Katagiri, T., Ishikawa, N. et al., Targeted serum glycoproteomics for the discovery of lung cancer-associated glycosylation disorders using lectin-coupled ProteinChip arrays. Proteomics 2009, 9, 21822192.
  • 58
    Liu, T., Qian, W. J., Gritsenko, M. A., Xiao, W. et al., High dynamic range characterization of the trauma patient plasma proteome. Mol. Cell Proteomics 2006, 5, 18991913.
  • 59
    Block, T. M., Comunale, M. A., Lowman, M., Steel, L. F. et al., Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc. Natl. Acad. Sci. USA 2005, 102, 779784.
  • 60
    Comunale, M. A., Wang, M., Hafner, J., Krakover, J. et al., Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J. Proteome Res. 2009, 8, 595602.
  • 61
    Ohtsubo, K., Marth, J. D., Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855867.
  • 62
    Hulsmeier, A. J., Paesold-Burda, P., Hennet, T., N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol. Cell Proteomics 2007, 6, 21322138.
  • 63
    Lewandrowski, U., Moebius, J., Walter, U., Sickmann, A., Elucidation of N-glycosylation sites on human platelet proteins: a glycoproteomic approach. Mol. Cell Proteomics 2006, 5, 226233.
  • 64
    Li, Y., Luo, L., Rasool, N., Kang, C. Y., Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J. Virol. 1993, 67, 584588.
  • 65
    Jeffs, S. A., McKeating, J., Lewis, S., Craft, H. et al., Antigenicity of truncated forms of the human immunodeficiency virus type 1 envelope glycoprotein. J. Gen. Virol. 1996, 77, 14031410.
  • 66
    Hebert, D. N., Zhang, J. X., Chen, W., Foellmer, B., Helenius, A., The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Biol. 1997, 139, 613623.
  • 67
    Land, A., Braakman, I., Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie 2001, 83, 783790.
  • 68
    Saunders, C. J., McCaffrey, R. A., Zharkikh, I., Kraft, Z. et al., The V1, V2, and V3 regions of the human immunodeficiency virus type 1 envelope differentially affect the viral phenotype in an isolate-dependent manner. J. Virol. 2005, 79, 90699080.
  • 69
    Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W. et al., Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393, 648659.
  • 70
    Reitter, J. N., Means, R. E., Desrosiers, R. C., A role for carbohydrates in immune evasion in AIDS. Nat. Med. 1998, 4, 679684.
  • 71
    Kwong, P. D., Doyle, M. L., Casper, D. J., Cicala, C. et al., HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 2002, 420, 678682.
  • 72
    Kwong, P. D., Human immunodeficiency virus: refolding the envelope. Nature 2005, 433, 815816.
  • 73
    Wei, X., Decker, J. M., Wang, S., Hui, H. et al., Antibody neutralization and escape by HIV-1. Nature 2003, 422, 307312.
  • 74
    Johnson, W. E., Sauvron, J. M., Desrosiers, R. C., Conserved, N-linked carbohydrates of human immunodeficiency virus type 1 gp41 are largely dispensable for viral replication. J. Virol. 2001, 75, 1142611436.
  • 75
    Leonard, C. K., Spellman, M. W., Riddle, L., Harris, R. J. et al., Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 1990, 265, 1037310382.
  • 76
    Mizuochi, T., Matthews, T. J., Kato, M., Hamako, J. et al., Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J. Biol. Chem. 1990, 265, 85198524.
  • 77
    Geyer, H., Holschbach, C., Hunsmann, G., Schneider, J., Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120. J. Biol. Chem. 1988, 263, 1176011767.
  • 78
    Mizuochi, T., Spellman, M. W., Larkin, M., Solomon, J. et al., Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem. J. 1988, 254, 599603.
  • 79
    Zhu, X., Borchers, C., Bienstock, R. J., Tomer, K. B., Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 2000, 39, 1119411204.
  • 80
    Cutalo, J. M., Deterding, L. J., Tomer, K. B., Characterization of glycopeptides from HIV-I(SF2) gp120 by liquid chromatography mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 15451555.
  • 81
    Go, E. P., Irungu, J., Zhang, Y., Dalpathado, D. S. et al., Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes' accessibility. J. Proteome Res. 2008, 7, 16601674.