In vivo characterization of renal auto-antigens involved in human auto-immune diseases: The case of membranous glomerulonephritis


  • Colour Online: See the article to view Figs. 2 and 5 in colour.


Renal auto-immune diseases represent a major source of morbidity in humans. For many years the knowledge on mechanisms of auto-immunity involving the kidney has been uniquely based on animal models. However, these findings often could not be readily translated to humans owing to notably difference in antigen expression by human podocytes. One example is Heymann nephritis (HN), the experimental model of human membranous glomerulonephritis (MGN), which is obtained in rats by injecting antibodies against megalin, a protein that is not present in human glomeruli. Human studies could not be done in the past since sequencing required too much material exceeding what obtainable from tissue biopsies in vivo. Research is now on the way to identify auto-antigens and isolate specific auto-antibodies in humans. New technology developments based on tissue microdissection and proteomical analysis have facilitated the recent discoveries, allowing direct analysis of human tissue in vivo. Major advances on the pathogenesis of MGN, the prototype for the formation and glomerular deposition of auto-antibodies, are now in progress. Two independent groups have, in fact, demonstrated the existence of specific IgG4 against phospholipase A2 receptor, aldose reductase and Mn-superoxide dismutase in glomerular eluates and in plasma of a prominent part of patients with MGN, suggesting a major role of these proteins as auto-antigens in human MGN. This review will focalize these aspects outlining the contribution of proteomics in most recent developments.