SEARCH

SEARCH BY CITATION

3 References

  • 1
    Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B. et al., Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. RCM 1996, 10, 12271232.
  • 2
    Claydon, M. A., Davey, S. N., Edwards-Jones, V., Gordon, D. B., The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol. 1996, 14, 15841586.
  • 3
    Krishnamurthy, T., Ross, P. L., Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun. Mass Spectrom. RCM 1996, 10, 19921996.
  • 4
    Seng, P., Drancourt, M., Gouriet, F., La Scola, B. et al., Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2009, 49, 543551.
  • 5
    Dhiman, N., Hall, L., Wohlfiel, S. L., Buckwalter, S. P., Wengenack, N. L., Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J. Clin. Microbiol. 2011, 49, 16141616.
  • 6
    Tan, K. E., Ellis, B. C., Lee, R., Stamper, P. D. et al., Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol. 2012, 50, 33013308.
  • 7
    Lagacé-Wiens, P. R. S., Adam, H. J., Karlowsky, J. A., Nichol, K. A. et al., Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time. J. Clin. Microbiol. 2012, 50, 33243328.
  • 8
    Mellmann, A., Cloud, J., Maier, T., Keckevoet, U. et al., Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 2008, 46, 19461954.
  • 9
    Fernández-Olmos, A., García-Castillo, M., Morosini, M.-I., Lamas, A. et al., MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2012, 11, 5962.
  • 10
    Nagy, E., Maier, T., Urban, E., Terhes, G. et al., Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2009, 15, 796802.
  • 11
    Veloo, A. C. M., Knoester, M., Degener, J. E., Kuijper, E. J., Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 15011506.
  • 12
    Fedorko, D. P., Drake, S. K., Stock, F., Murray, P. R., Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2012, 31, 22572262.
  • 13
    Knoester, M., van Veen, S. Q., Claas, E. C. J., Kuijper, E. J., Routine identification of clinical isolates of anaerobic bacteria: matrix-assisted laser desorption ionization-time of flight mass spectrometry performs better than conventional identification methods. J. Clin. Microbiol. 2012, 50, 1504.
  • 14
    Nagy, E., Becker, S., Kostrzewa, M., Barta, N., Urbán, E., The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J. Med. Microbiol. 2012, 61, 13931400.
  • 15
    Marklein, G., Josten, M., Klanke, U., Müller, E. et al., Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J. Clin. Microbiol. 2009, 47, 29122917.
  • 16
    Stevenson, L. G., Drake, S. K., Shea, Y. R., Zelazny, A. M., Murray, P. R., Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J. Clin. Microbiol. 2010, 48, 34823486.
  • 17
    Bader, O., Weig, M., Taverne-Ghadwal, L., Lugert, R. et al., Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 13591365.
  • 18
    Buchan, B. W., Ledeboer, N. A., Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 13591366.
  • 19
    Fournier, P.-E., Couderc, C., Buffet, S., Flaudrops, C., Raoult, D., Rapid and cost-effective identification of Bartonella species using mass spectrometry. J. Med. Microbiol. 2009, 58, 11541159.
  • 20
    Biswas, S., Rolain, J.-M., Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J. Microbiol. Methods 2013, 92, 1424.
  • 21
    Seibold, E., Maier, T., Kostrzewa, M., Zeman, E., Splettstoesser, W., Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J. Clin. Microbiol. 2010, 48, 10611069.
  • 22
    Lista, F., Reubsaet, F. A. G., De Santis, R., Parchen, R. R. et al., Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS. BMC Microbiol. 2011, 11, 267.
  • 23
    Moliner, C., Ginevra, C., Jarraud, S., Flaudrops, C. et al., Rapid identification of Legionella species by mass spectrometry. J. Med. Microbiol. 2010, 59, 273284.
  • 24
    Saleeb, P. G., Drake, S. K., Murray, P. R., Zelazny, A. M., Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 17901794.
  • 25
    El Khéchine, A., Couderc, C., Flaudrops, C., Raoult, D., Drancourt, M., Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PloS One 2011, 6, e24720.
  • 26
    Cassagne, C., Ranque, S., Normand, A.-C., Fourquet, P. et al., Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PloS One 2011, 6, e28425.
  • 27
    Lau, A. F., Drake, S. K., Calhoun, L. B., Henderson, C. M., Zelazny, A. M., Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 828834.
  • 28
    Von Bergen, M., Eidner, A., Schmidt, F., Murugaiyan, J. et al., Identification of harmless and pathogenic algae of the genus Prototheca by MALDI-MS. Proteomics Clin. Appl. 2009, 3, 774784.
  • 29
    Murugaiyan, J., Ahrholdt, J., Kowbel, V., Roesler, U., Establishment of a matrix-assisted laser desorption ionization time-of-flight mass spectrometry database for rapid identification of infectious achlorophyllous green micro-algae of the genus Prototheca. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 461467.
  • 30
    Mellmann, A., Bimet, F., Bizet, C., Borovskaya, A. D. et al., High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. J. Clin. Microbiol. 2009, 47, 37323734.
  • 31
    Ferreira, L., Sánchez-Juanes, F., González-Avila, M., Cembrero-Fuciños, D. et al., Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 21102115.
  • 32
    Köhling, H. L., Bittner, A., Müller, K.-D., Buer, J. et al., Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J. Med. Microbiol. 2012, 61, 339344.
  • 33
    Wang, X.-H., Zhang, G., Fan, Y.-Y., Yang, X. et al., Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods 2013, 92, 231235.
  • 34
    La Scola, B., Raoult, D., Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PloS One 2009, 4, e8041.
  • 35
    Stevenson, L. G., Drake, S. K., Murray, P. R., Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 444447.
  • 36
    Schubert, S., Weinert, K., Wagner, C., Gunzl, B. et al., Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J. Mol. Diagn. 2011, 13, 701706.
  • 37
    Sparbier, K., Weller, U., Boogen, C., Kostrzewa, M., Rapid detection of Salmonella sp. by means of a combination of selective enrichment broth and MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2012, 31, 767773.
  • 38
    Edwards-Jones, V., Claydon, M. A., Evason, D. J., Walker, J. et al., Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 2000, 49, 295300.
  • 39
    Walker, J., Fox, A. J., Edwards-Jones, V., Gordon, D. B., Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J. Microbiol. Methods 2002, 48, 117126.
  • 40
    Du, Z., Yang, R., Guo, Z., Song, Y., Wang, J., Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2002, 74, 54875491.
  • 41
    Bernardo, K., Pakulat, N., Macht, M., Krut, O. et al., Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2002, 2, 747753.
  • 42
    Jackson, K. A., Edwards-Jones, V., Sutton, C. W., Fox, A. J., Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J. Microbiol. Methods 2005, 62, 273284.
  • 43
    Majcherczyk, P. A., McKenna, T., Moreillon, P., Vaudaux, P., The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 2006, 255, 233239.
  • 44
    Shah, H. N., Rajakaruna, L., Ball, G., Misra, R. et al., Tracing the transition of methicillin resistance in sub-populations of Staphylococcus aureus, using SELDI-TOF mass spectrometry and artificial neural network analysis. Syst. Appl. Microbiol. 2011, 34, 8186.
  • 45
    Wolters, M., Rohde, H., Maier, T., Belmar-Campos, C. et al., MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int. J. Med. Microbiol. 2011, 301, 6468.
  • 46
    Josten, M., Reif, M., Szekat, C., Al-Sabti, N. et al., Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J. Clin. Microbiol. 2013, 51, 18091817.
  • 47
    Lu, J.-J., Tsai, F.-J., Ho, C.-M., Liu, Y.-C., Chen, C.-J., peptide biomarker discovery for identification of methicillin-resistant and vancomycin-intermediate Staphylococcus aureus strains by MALDI-TOF. Anal. Chem. 2012, 84, 56855692.
  • 48
    Szabados, F., Kaase, M., Anders, A., Gatermann, S. G., Identical MALDI TOF MS-derived peak profiles in a pair of isogenic SCCmec-harboring and SCCmec-lacking strains of Staphylococcus aureus. J. Infect. 2012, 65, 400405.
  • 49
    Griffin, P. M., Price, G. R., Schooneveldt, J. M., Schlebusch, S. et al., Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J. Clin. Microbiol. 2012, 50, 29182931.
  • 50
    Wybo, I., De Bel, A., Soetens, O., Echahidi, F. et al., Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 19611964.
  • 51
    Nagy, E., Becker, S., Sóki, J., Urbán, E., Kostrzewa, M., Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Med. Microbiol. 2011, 60, 15841590.
  • 52
    Marinach, C., Alanio, A., Palous, M., Kwasek, S. et al., MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics 2009, 9, 46274631.
  • 53
    De Carolis, E., Vella, A., Florio, A. R., Posteraro, P. et al., Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J. Clin. Microbiol. 2012, 50, 24792483.
  • 54
    Vella, A., Carolis, E. D., Vaccaro, L., Posteraro, P. et al., Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis. J. Clin. Microbiol. 2013, 51, 29642969.
  • 55
    Hrabák, J., Walková, R., Studentová, V., Chudácková, E., Bergerová, T., Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 32223227.
  • 56
    Sparbier, K., Schubert, S., Weller, U., Boogen, C., Kostrzewa, M., Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J. Clin. Microbiol. 2012, 50, 927937.
  • 57
    Burckhardt, I., Zimmermann, S., Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J. Clin. Microbiol. 2011, 49, 33213324.
  • 58
    Bou, G., Minimum inhibitory concentration (MIC) analysis and susceptibility testing of MRSA. Methods Mol. Biol. Clifton NJ 2007, 391, 2949.
  • 59
    Woodford, N., Eastaway, A. T., Ford, M., Leanord, A. et al., Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J. Clin. Microbiol. 2010, 48, 29993002.
  • 60
    Alvarez-Buylla, A., Picazo, J. J., Culebras, E., Optimized method for acinetobacter species carbapenemase detection and identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 15891592.
  • 61
    Kempf, M., Bakour, S., Flaudrops, C., Berrazeg, M. et al., Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PloS One 2012, 7, e31676.
  • 62
    Hrabák, J., Studentová, V., Walková, R., Zemlicková, H. et al., Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2012, 50, 24412443.
  • 63
    Horneffer, V., Strupat, K., Hillenkamp, F., Localization of noncovalent complexes in MALDI-preparations by CLSM. J. Am. Soc. Mass Spectrom. 2006, 17, 15991604.
  • 64
    Hooff, G. P., van Kampen, J. J. A., Meesters, R. J. W., van Belkum, A. et al., Characterization of β-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J. Proteome Res. 2012, 11, 7984.
  • 65
    Tenover, F. C., Raney, P. M., Williams, P. P., Rasheed, J. K. et al., Evaluation of the NCCLS extended-spectrum beta-lactamase confirmation methods for Escherichia coli with isolates collected during Project ICARE. J. Clin. Microbiol. 2003, 41, 31423146.
  • 66
    Birgy, A., Bidet, P., Genel, N., Doit, C. et al., Phenotypic screening of carbapenemases and associated β-lactamases in carbapenem-resistant Enterobacteriaceae. J. Clin. Microbiol. 2012, 50, 12951302.
  • 67
    Pasteran, F., Veliz, O., Faccone, D., Guerriero, L. et al., A simple test for the detection of KPC and metallo-β-lactamase carbapenemase-producing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 14381441.
  • 68
    Pournaras, S., Poulou, A., Tsakris, A., Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. J. Antimicrob. Chemother. 2010, 65, 13191321.
  • 69
    Sauer, S., Kliem, M., Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 2010, 8, 7482.
  • 70
    Poole, K., Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2004, 10, 1226.
  • 71
    Tenover, F. C., Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006, 119, S3S10; discussion S62–S70.
  • 72
    Poole, K., Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 2007, 39, 162176.
  • 73
    Dortet, L., Poirel, L., Nordmann, P., Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob. Agents Chemother. 2012, 56, 64376440.
  • 74
    Grundt, A., Findeisen, P., Miethke, T., Jäger, E. et al., Rapid detection of ampicillin resistance in Escherichia coli by quantitative mass spectrometry. J. Clin. Microbiol. 2012, 50, 17271729.
  • 75
    Dortet, L., Poirel, L., Nordmann, P., Rapid detection of carbapenemase-producing Pseudomonas spp. J. Clin. Microbiol. 2012, 50, 37733776.
  • 76
    Davies, J., Wright, G. D., Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 1997, 5, 234240.
  • 77
    Wright, G. D., Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 14511470.
  • 78
    Green, K. D., Chen, W., Houghton, J. L., Fridman, M., Garneau-Tsodikova, S., Exploring the substrate promiscuity of drug-modifying enzymes for the chemoenzymatic generation of N-acylated aminoglycosides. Chembiochem Eur. J. Chem. Biol. 2010, 11, 119126.
  • 79
    Burckhardt, I., Pauker, V., Bode, K., Zimmermann, S., Detecting Aminoglycoside Resistance by Mass Spectrometry, ECCMID, Poster P-1549, Berlin 2013.
  • 80
    Demirev, P. A., Hagan, N. S., Antoine, M. D., Lin, J. S., Feldman, A. B., Establishing drug resistance in microorganisms by mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 11941201.