SEARCH

SEARCH BY CITATION

References

  • 1
    Krausslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA ( 1989) Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Natl Acad Sci USA 86: 807811.
  • 2
    Turner BG, Summers MF ( 1999) Structural biology of HIV. J Mol Biol 285: 132.
  • 3
    de Oliveira T, Engelbrecht S, Janse van Rensburg E, Gordon M, Bishop K, zur Megede J, Barnett SW, Cassol S ( 2003) Variability at human immunodeficiency virus type 1 subtype C protease cleavage sites: an indication of viral fitness? J Virol 77: 94229430.
  • 4
    Weber IT, Wu J, Adomat J, Harrison RW, Kimmel AR, Wondrak EM, Louis JM ( 1997) Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate—interactions with frequently occurring glutamic acid residue at P2′ position of substrates. Eur J Biochem 249: 523530.
  • 5
    Mahalingam B, Louis JM, Hung J, Harrision RW, Weber IT ( 2001) Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Proteins 43: 455464.
  • 6
    Tie Y, Boross PI, Wang YF, Gaddis L, Liu F, Chen X, Tozser J, Harrison RW, Weber IT ( 2005) Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS J 272: 52655277.
  • 7
    Pettit SC, Lindquist JN, Kaplan AH, Swanstrom R ( 2005) Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates. Retrovirology 2: 66.
  • 8
    Moody MD, Pettit SC, Shao W, Everitt L, Loeb DD, Hutchison CAIII, Swanstrom R ( 1995) A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant. Virology 207: 475485.
  • 9
    Martinez-Picado J, Savara AV, Sutton L, D'Aquila RT ( 1999) Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 73: 37443752.
  • 10
    Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L, Lamarre D ( 1997) Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol 71: 10891096.
  • 11
    Prabu-Jeyabalan M, Nalivaika E, Schiffer CA ( 2000) How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J Mol Biol 301: 12071220.
  • 12
    Prabu-Jeyabalan M, Nalivaika EA, King NM, Schiffer CA ( 2003) Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy. J Virol 77: 13061315.
  • 13
    Prabu-Jeyabalan M, Nalivaika EA, Schiffer CA ( 2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 10: 369381.
  • 14
    King NM, Prabu-Jeyabalan M, Nalivaika EA, Schiffer CA ( 2004) Combating susceptibility to drug resistance: lessons from HIV-1 protease. Chem Biol 11: 13331338.
  • 15
    Prabu-Jeyabalan M, Nalivaika EA, King NM, Schiffer CA ( 2004) Structural basis for coevolution of a human immunodeficiency virus type 1 nucleocapsid-p1 cleavage site with a V82A drug-resistant mutation in viral protease. J Virol 78: 1244612454.
  • 16
    Kolli M, Stawiski E, Chappey C, Schiffer CA ( 2009) Human immunodeficiency virus type 1 protease-correlated cleavage site mutations enhance inhibitor resistance. J Virol 83: 1102711042.
  • 17
    Cameron CE, Ridky TW, Shulenin S, Leis J, Weber IT, Copeland T, Wlodawer A, Burstein H, Bizub-Bender D, Skalka AM ( 1994) Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases. J Biol Chem 269: 1117011177.
  • 18
    Grinde B, Cameron CE, Leis J, Weber IT, Wlodawer A, Burstein H, Bizub D, Skalka AM ( 1992) Mutations that alter the activity of the Rous sarcoma virus protease. J Biol Chem 267: 94819490.
  • 19
    Grinde B, Cameron CE, Leis J, Weber IT, Wlodawer A, Burstein H, Skalka AM ( 1992) Analysis of substrate interactions of the Rous sarcoma virus wild type and mutant proteases and human immunodeficiency virus-1 protease using a set of systematically altered peptide substrates. J Biol Chem 267: 94919498.
  • 20
    Konvalinka J, Horejsi M, Andreansky M, Novek P, Pichova I, Blaha I, Fabry M, Sedlacek J, Foundling S, Strop P ( 1992) An engineered retroviral proteinase from myeloblastosis associated virus acquires pH dependence and substrate specificity of the HIV-1 proteinase. EMBO J 11: 11411144.
  • 21
    Loeb DD, Swanstrom R, Everitt L, Manchester M, Stamper SE, Hutchison CAIII ( 1989) Complete mutagenesis of the HIV-1 protease. Nature 340: 397400.
  • 22
    Tozser J, Blaha I, Copeland TD, Wondrak EM, Oroszlan S ( 1991) Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag and Gag-Pol polyproteins. FEBS Lett 281: 7780.
  • 23
    Ohtaka H, Schon A, Freire E ( 2003) Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Biochemistry 42: 1365913666.
  • 24
    Gulnik SV, Suvorov LI, Liu B, Yu B, Anderson B, Mitsuya H, Erickson JW ( 1995) Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry 34: 92829287.
  • 25
    King NM, Prabu-Jeyabalan M, Nalivaika EA, Wigerinck P, de Bethune MP, Schiffer CA ( 2004) Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor. J Virol 78: 1201212021.
  • 26
    Bardi JS, Luque, I., Freire E ( 1997) Structure-based thermodynamic analysis of HIV-1 protease inhibitors. Biochemistry 36: 65886596.
  • 27
    Luque I, Todd MJ, Gomez J, Semo N, Freire E ( 1998) Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Biochemistry 37: 57915797.
  • 28
    Velazquez-Campoy A, Muzammil S, Ohtaka H, Schon A, Vega S, Freire E ( 2003) Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr Drug Targets Infect Disord 3: 311328.
  • 29
    Wells JA, Powers DB, Bott RR, Graycar TP, Estell DA ( 1987) Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci USA 84: 12191223.
  • 30
    Shifman JM, Mayo SL ( 2003) Exploring the origins of binding specificity through the computational redesign of calmodulin. Proc Natl Acad Sci USA 100: 1327413279.
  • 31
    Shifman JM, Mayo SL ( 2002) Modulating calmodulin binding specificity through computational protein design. J Mol Biol 323: 417423.
  • 32
    Green DF, Dennis AT, Fam PS, Tidor B, Jasanoff A ( 2006) Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide. Biochemistry 45: 1254712559.
  • 33
    Reina J, Lacroix E, Hobson SD, Fernandez-Ballester G, Rybin V, Schwab MS, Serrano L, Gonzalez C ( 2002) Computer-aided design of a PDZ domain to recognize new target sequences. Nat Struct Biol 9: 621627.
  • 34
    Bolon DN, Grant RA, Baker TA, Sauer RT ( 2005) Specificity versus stability in computational protein design. Proc Natl Acad Sci USA 102: 1272412729.
  • 35
    Joachimiak LA, Kortemme T, Stoddard BL, Baker D ( 2006) Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein–protein interface. J Mol Biol 361: 195208.
  • 36
    Kurth T, Grahn S, Thormann M, Ullmann D, Hofmann HJ, Jakubke HD, Hedstrom L ( 1998) Engineering the S1′ subsite of trypsin: design of a protease which cleaves between dibasic residues. Biochemistry 37: 1143411440.
  • 37
    Kurth T, Ullmann D, Jakubke HD, Hedstrom L ( 1997) Converting trypsin to chymotrypsin: structural determinants of S1′ specificity. Biochemistry 36: 1009810104.
  • 38
    Hung SH, Hedstrom L ( 1998) Converting trypsin to elastase: substitution of the S1 site and adjacent loops reconstitutes esterase specificity but not amidase activity. Protein Eng 11: 669673.
  • 39
    Page MJ, Wong SL, Hewitt J, Strynadka NC, MacGillivray RT ( 2003) Engineering the primary substrate specificity of Streptomyces griseus trypsin. Biochemistry 42: 90609066.
  • 40
    Hedstrom L, Szilagyi L, Rutter WJ ( 1992) Converting trypsin to chymotrypsin: the role of surface loops. Science 255: 12491253.
  • 41
    Wilson C, Mace JE, Agard DA ( 1991) Computational method for the design of enzymes with altered substrate specificity. J Mol Biol 220: 495506.
  • 42
    Prabu-Jeyabalan M, Nalivaika EA, Romano K, Schiffer CA ( 2006) Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J Virol 80: 36073616.
  • 43
    Das R, Baker D ( 2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77: 363382.
  • 44
    Bradley P, Misura KM, Baker D ( 2005) Toward high-resolution de novo structure prediction for small proteins. Science 309: 18681871.
  • 45
    Huang P-S, Ban Y-EA, Richter F, Andre I, Vernon R, Schief WR, Baker D ( 2011) RosettaRemodel: a generalized framework for flexible backbone protein design. PLoS One 6: e24109.
  • 46
    Park S, Morley KL, Horsman GP, Holmquist M, Hult K, Kazlauskas RJ ( 2005) Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chem Biol 12: 4554.
  • 47
    Lazaridis T, Karplus M ( 1999) Effective energy function for proteins in solution. Proteins 35: 133152.
  • 48
    Bhat TN, Baldwin ET, Liu B, Cheng YS, Erickson JW ( 1994) Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor. Nat Struct Biol 1: 552556.
  • 49
    Bhat TN, Baldwin ET, Liu B, Cheng YS, Erickson JW ( 1995) X-ray structure of a tethered dimer for HIV-1 protease. Adv Exp Med Biol 362: 439444.
  • 50
    Das A, Rao DR, Hosur MV ( 2007) X-ray structure of HIV-1 protease tethered dimer complexed to ritonavir. Protein Pept Lett 14: 565568.
  • 51
    Cheng YS, Yin FH, Foundling S, Blomstrom D, Kettner CA ( 1990) Stability and activity of human immunodeficiency virus protease: comparison of the natural dimer with a homologous, single-chain tethered dimer. Proc Natl Acad Sci USA 87: 96609664.
  • 52
    Altman MD, Nalivaika EA, Prabu-Jeyabalan M, Schiffer CA, Tidor B ( 2008) Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins 70: 678694.
  • 53
    Dahiyat BI, Gordon DB, Mayo SL ( 1997) Automated design of the surface positions of protein helices. Protein Sci 6: 13331337.
  • 54
    Dahiyat BI, Mayo SL ( 1997) Probing the role of packing specificity in protein design. Proc Natl Acad Sci USA 94: 1017210177.
  • 55
    Dahiyat BI, Mayo SL ( 1997) De novo protein design: fully automated sequence selection. Science 278: 8287.
  • 56
    Dahiyat BI, Sarisky CA, Mayo SL ( 1997) De novo protein design: towards fully automated sequence selection. J Mol Biol 273: 789796.
  • 57
    Gordon DB, Hom GK, Mayo SL, Pierce NA ( 2003) Exact rotamer optimization for protein design. J Comput Chem 24: 232243.
  • 58
    Desmet J, Spriet J, Lasters I ( 2002) Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization. Proteins 48: 3143.
  • 59
    Hui JO, Tomasselli AG, Reardon IM, Lull JM, Brunner DP, Tomich CS, Heinrikson RL ( 1993) Large scale purification and refolding of HIV-1 protease from Escherichia coli inclusion bodies. J Protein Chem 12: 323327.
  • 60
    Matayoshi ED, Wang GT, Krafft GA, Erickson J ( 1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247: 954958.
  • 61
    Otwinowski Z, Minor W ( 1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307326.
  • 62
    The CCP4 suite ( 1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D50: 760763.
  • 63
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ ( 2007) Phaser crystallographic software. J Appl Cryst 40: 658674.
  • 64
    Morris RJ, Perrakis A, Lamzin VS ( 2002) ARP/wARP's model-building algorithms. I. The main chain. Acta Cryst D58: 968975.
  • 65
    Langer G, Cohen SX, Lamzin VS, Perrakis A ( 2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3: 11711179.
  • 66
    Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M ( 2004) Developments in the CCP4 molecular-graphics project. Acta Cryst D60: 22882294.
  • 67
    Murshudov GN, Vagin AA, Dodson EJ ( 1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D53: 240255.
  • 68
    Painter J, Merritt EA ( 2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Cryst D62: 439450.
  • 69
    Emsley P, Cowtan K ( 2004) Coot: model-building tools for molecular graphics. Acta Cryst D60: 21262132.
  • 70
    DeLano WL ( 2002) The PyMol user's manual. San Carlos, CA: DeLano Scientific.