SEARCH

SEARCH BY CITATION

References

  • 1
    Haslam E ( 1993) Shikimic acid: metabolism and metabolites. New York: Wiley.
  • 2
    Gorisch H ( 1978) Mechanism of chorismate mutase reaction. Biochemistry 17: 37003705.
  • 3
    Copley SD, Knowles JR ( 1985) The uncatalyzed Claisen rearrangement of chorismate to prephenate prefers a transition-state of chairlike geometry. J Am Chem Soc 107: 53065308.
  • 4
    Andrews PR, Smith GD, Young IG ( 1973) Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate. Biochemistry 12: 34923498.
  • 5
    MacBeath G, Kast P, Hilvert D ( 1998) A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37: 1006273.
  • 6
    Sasso S, Ramakrishnan C, Gamper M, Hilvert D, Kast P ( 2005) Characterization of the secreted chorismate mutase from the pathogen Mycobacterium tuberculosis. FEBS J 272: 375389.
  • 7
    Okvist M, Dey R, Sasso S, Grahn E, Kast P, Krengel U ( 2006) 1.6 A crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis: Novel fold topology revealed. J Mol Biol 357: 14831499.
  • 8
    Schneider CZ, Parish T, Basso LA, Santos DS ( 2008) The two chorismate mutases from both Mycobacterium tuberculosis and Mycobacterium smegmatis: biochemical analysis and limited regulation of promoter activity by aromatic amino acids. J Bact 190: 122134.
  • 9
    Lyne PD, Mulholland AJ, Richards WG ( 1995) Insights into chorismate mutase catalysis from a combined QM/MM simulation of the enzyme reaction. J Am Chem Soc 117: 1134511350.
  • 10
    Claeyssens F, Ranaghan KE, Manby FR, Harvey JN, Mulholland AJ ( 2005) Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem Commun 40: 50685070.
  • 11
    Roca M, Messer B, Hilvert D, Warshel A ( 2008) On the relationship between folding and chemical landscapes in enzyme catalysis. Proc Nat Acad Sci USA 105: 1387713882.
  • 12
    Chook YM, Ke HM, Lipscomb WN ( 1993) Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog. Proc Nat Acad Sci USA 90: 86008603.
  • 13
    Lee AY, Karplus PA, Ganem B, Clardy J ( 1995) Atomic structure of the buried catalytic pocket of Escherichia coli chorismate mutase. J Am Chem Soc 117: 36273628.
  • 14
    Ludemann SK, Lounnas V, Wade RC ( 2000) How do substrates enter and products exit the buried active site of cytochrome P450cam? Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303: 797811.
  • 15
    Kim JS, Groll M, Musiol HA, Behrendt R, Kaiser M, Moroder L, Huber R, Brandstetter H ( 2002) Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. J Mol Biol 324: 10411050.
  • 16
    Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R ( 2009) Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. J Phys Chem B 113: 1301813025.
  • 17
    Kast P, Asifullah M, Jiang N, Hilvert D ( 1996) Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis. Proc Nat Acad Sci USA 93: 50435048.
  • 18
    Kast P, Hartgerink JD, Asifullah M, Hilvert D ( 1996) Electrostatic catalysis of the Claisen rearrangement: probing the role of Glu78 in Bacillus subtilis chorismate mutase by genetic selection. J Am Chem Soc 118: 30693070.
  • 19
    Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR ( 2004) The pfam protein families database. Nucl Acid Res 32: 138141.
  • 20
    Christen M, Hünenberger PH, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren WF ( 2005) The GROMOS software for biomolecular simulation: GROMOS 2005. J Comp Chem 26: 17191751.
  • 21
    Schuler LD, Daura X, van Gunsteren WF ( 2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comp Chem 22: 12051218.
  • 22
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J, Interaction models for water in relation to protein hydration, In: Pullman B, Ed. ( 1981) Intermolecular forces. Dordrecht: Reidel, pp 331342.
  • 23
    Ryckaert JP, Ciccotti G, Berendsen HJC ( 1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys 23: 327341.
  • 24
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR ( 1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 36843690.
  • 25
    van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG ( 1996) Biomolecular simulation: the GROMOS96 manual und user guide. Zürich, Switzerland: Vdf Hochschulverlag AG, ETH.
  • 26
    Tironi IG, Sperb R, Smith PE, van Gunsteren WF ( 1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102: 54515459.
  • 27
    Heinz TN, van Gunsteren WF, Hünenberger PH ( 2001) Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. J Chem Phys 115: 11251136.