SEARCH

SEARCH BY CITATION

References

  • 1
    Kögl F, Tönnis B ( 1936) Uber das Bios-Problem. Darstellung von Krystallisierten Biotin aus Eigelb. Z Physiol Chem 242: 4373.
  • 2
    Eakin RE, Snell EE, Williams RJ ( 1940) A constituent of raw egg white capable of inactivating biotin in vitro. J Biol Chem 136: 801802.
  • 3
    du Vigneaud V ( 1942) The structure of biotin. Science 96: 455461.
  • 4
    Lardy HA, Peanasky R ( 1953) Metabolic functions of biotin. Physiol Rev 33: 560565.
  • 5
    Wakil SJ, Titchener EB, Gibson DM ( 1958) Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim Biophys Acta 29: 225226.
  • 6
    Levert KL, Lloyd RB, Waldrop GL ( 2000) Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin? Biochemistry 39: 41224128.
  • 7
    Zeczycki TN, Menefee AL, Adina-Zada A, Jitrapakdee S, Surinya KH, Wallace JC, Attwood PV, St Maurice M, Cleland WW ( 2011) Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli. Biochemistry 50: 97249737.
  • 8
    Goodall GJ, Baldwin GS, Wallace JC, Keech DB ( 1981) Factors that influence the translocation of the N-carboxybiotin moiety between the two sub-sites of pyruvate carboxylase. Biochem J 199: 603609.
  • 9
    Gerwin BI, Jacobson BE, Wood HG ( 1969) Transcarboxylase. 8. Isolation and properties of a biotin-carboxyl carrier protein. Proc Natl Acad Sci USA 64: 13151322.
  • 10
    Fan C, Chou CY, Tong L, Xiang S ( 2012) Crystal structure of urea carboxylase provides insights into the carboxyltransfer reaction. J Biol Chem 287: 93899398.
  • 11
    Tong L ( 2012) Structure and function of biotin-dependent carboxylases. Cellular and Molecular Life Sciences: CMLS online.
  • 12
    Lane MD, Moss J, Polakis SE ( 1974) Acetyl coenzyme A carboxylase. Curr Top Cell Regul 8: 139195.
  • 13
    Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD ( 1974) Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249: 66336645.
  • 14
    Waldrop GL, Rayment I, Holden HM ( 1994) Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry 33: 1024910256.
  • 15
    Janiyani K, Bordelon T, Waldrop GL, Cronan JE, Jr. ( 2001) Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer. J Biol Chem 276: 2986429870.
  • 16
    de Queiroz MS, Waldrop GL ( 2007) Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity. J Theor Biol 246: 167175.
  • 17
    Thoden JB, Blanchard CZ, Holden HM, Waldrop GL ( 2000) Movement of the biotin carboxylase B-domain as a result of ATP binding. J Biol Chem 275: 1618316190.
  • 18
    Mochalkin I, Miller JR, Evdokimov A, Lightle S, Yan C, Stover CK, Waldrop GL ( 2008) Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase. Protein Sci 17: 17061718.
  • 19
    Chou CY, Yu LP, Tong L ( 2009) Crystal structure of biotin carboxylase in complex with substrates and implications for its catalytic mechanism. J Biol Chem 284: 1169011697.
  • 20
    St Maurice M, Reinhardt L, Surinya KH, Attwood PV, Wallace JC, Cleland WW, Rayment I ( 2007) Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme. Science 317: 10761079.
  • 21
    Xiang S, Tong L ( 2008) Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol 15: 295302.
  • 22
    Lietzan AD, Menefee AL, Zeczycki TN, Kumar S, Attwood PV, Wallace JC, Cleland WW, St Maurice M ( 2011) Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli. Biochemistry 50: 97089723.
  • 23
    Kondo S, Nakajima Y, Sugio S, Yong-Biao J, Sueda S, Kondo H ( 2004) Structure of the biotin carboxylase subunit of pyruvate carboxylase from Aquifex aeolicus at 2.2 A resolution. Acta Cryst D60: 486492.
  • 24
    Shen Y, Volrath SL, Weatherly SC, Elich TD, Tong L ( 2004) A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Mol Cell 16: 881891.
  • 25
    Cho YS, Lee JI, Shin D, Kim HT, Cheon YH, Seo CI, Kim YE, Hyun YL, Lee YS, Sugiyama K, Park SY, Ro S, Cho JM, Lee TG, Heo YS ( 2008) Crystal structure of the biotin carboxylase domain of human acetyl-CoA carboxylase 2. Proteins 70: 268272.
  • 26
    Kondo S, Nakajima Y, Sugio S, Sueda S, Islam MN, Kondo H ( 2007) Structure of the biotin carboxylase domain of pyruvate carboxylase from Bacillus thermodenitrificans. Acta Cryst D63: 885890.
  • 27
    Novak BR, Moldovan D, Waldrop GL, de Queiroz MS ( 2011) Behavior of the ATP grasp domain of biotin carboxylase monomers and dimers studied using molecular dynamics simulations. Proteins 79: 622632.
  • 28
    Hibi T, Nishioka T, Kato H, Tanizawa K, Fukui T, Katsube Y, Oda J ( 1996) Structure of the multifunctional loops in the nonclassical ATP-binding fold of glutathione synthetase. Nat Struct Biol 3: 1618.
  • 29
    Fan C, Moews PC, Walsh CT, Knox JR ( 1994) Vancomycin resistance: structure of D-alanine: D-alanine ligase at 2.3 A resolution. Science 266: 439443.
  • 30
    Wolodko WT, Fraser ME, James MN, Bridger WA ( 1994) The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-A resolution. J Biol Chem 269: 1088310890.
  • 31
    Murzin AG ( 1996) Structural classification of proteins: new superfamilies. Curr Opin Struct Biol 6: 386394.
  • 32
    Galperin MY, Koonin EV ( 1997) A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci 6: 26392643.
  • 33
    Fawaz MV, Topper ME, Firestine SM ( 2011) The ATP-grasp enzymes. Bioorg Chem 39: 185191.
  • 34
    Thoden JB, Kappock TJ, Stubbe J, Holden HM ( 1999) Three-dimensional structure of N5-carboxyaminoimidazole ribonucleotide synthetase: a member of the ATP grasp protein superfamily. Biochemistry 38: 1548015492.
  • 35
    Smith CA, Rayment I ( 1996) Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J 70: 15901602.
  • 36
    Thoden JB, Firestine SM, Benkovic SJ, Holden HM ( 2002) PurT-encoded glycinamide ribonucleotide transformylase. Accommodation of adenosine nucleotide analogs within the active site. J Biol Chem 277: 2389823908.
  • 37
    Nilsson Lill SO, Gao J, Waldrop GL ( 2008) Molecular dynamics simulations of biotin carboxylase. J Phys Chem B 112: 31493156.
  • 38
    Sloane V, Blanchard CZ, Guillot F, Waldrop GL ( 2001) Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis. J Biol Chem 276: 2499124996.
  • 39
    Bordelon T, Nilsson Lill SO, Waldrop GL ( 2009) The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase. Proteins 74: 808819.
  • 40
    Tipton PA, Cleland WW ( 1988) Catalytic mechanism of biotin carboxylase: steady-state kinetic investigations. Biochemistry 27: 43174325.
  • 41
    Pecoraro VL, Hermes JD, Cleland WW ( 1984) Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Biochemistry 23: 52625271.
  • 42
    Thoden JB, Raushel FM, Benning MM, Rayment I, Holden HM ( 1999) The structure of carbamoyl phosphate synthetase determined to 2.1 A resolution. Acta Cryst D55: 824.
  • 43
    Thoden JB, Holden HM, Firestine SM ( 2008) Structural analysis of the active site geometry of N5-carboxyaminoimidazole ribonucleotide synthetase from Escherichia coli. Biochemistry 47: 1334613353.
  • 44
    Thoden JB, Holden HM, Paritala H, Firestine SM ( 2010) Structural and functional studies of Aspergillus clavatus N5-carboxyaminoimidazole ribonucleotide synthetase. Biochemistry 49: 752760.
  • 45
    Blanchard CZ, Lee YM, Frantom PA, Waldrop GL ( 1999) Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin. Biochemistry 38: 33933400.
  • 46
    Attwood PV, Wallace JC ( 1986) The carboxybiotin complex of chicken liver pyruvate carboxylase. A kinetic analysis of the effects of acetyl-CoA, Mg2+ ions and temperature on its stability and on its reaction with 2-oxobutyrate. Biochem J 235: 359364.
  • 47
    Sloane V, Waldrop GL ( 2004) Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase. J Biol Chem 279: 1577215778.
  • 48
    Chou CY, Tong L ( 2011) Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization. J Biol Chem 286: 2441724425.
  • 49
    Miller JR, Dunham S, Mochalkin I, Banotai C, Bowman M, Buist S, Dunkle B, Hanna D, Harwood HJ, Huband MD, Karnovsky A, Kuhn M, Limberakis C, Liu JY, Mehrens S, Mueller WT, Narasimhan L, Ogden A, Ohren J, Prasad JV, Shelly JA, Skerlos L, Sulavik M, Thomas VH, VanderRoest S, Wang L, Wang Z, Whitton A, Zhu T, Stover CK ( 2009) A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc Natl Acad Sci USA 106: 17371742.
  • 50
    Waldrop GL ( 2009) Smaller is better for antibiotic discovery. Chem Biol 4: 397399.
  • 51
    Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P, Cox PB, Prasad JV, Lightle S, Huband MD, Stover CK ( 2009) Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. Chem Biol 4: 473483.
  • 52
    Cheng CC, Shipps GW, Jr, Yang Z, Sun B, Kawahata N, Soucy KA, Soriano A, Orth P, Xiao L, Mann P, Black T ( 2009) Discovery and optimization of antibacterial AccC inhibitors. Bioorg Med Chem Lett 19: 65076514.
  • 53
    Gerth K, Bedorf N, Irschik H, Hofle G, Reichenbach H ( 1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties. J Antibiot (Tokyo) 47: 2331.
  • 54
    Cho YS, Lee JI, Shin D, Kim HT, Jung HY, Lee TG, Kang LW, Ahn YJ, Cho HS, Heo YS ( 2010) Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK. Biochem Biophys Res Commun 391: 187192.
  • 55
    Barber MC, Price NT, Travers MT ( 2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta 1733: 128.
  • 56
    Athappilly FK, Hendrickson WA ( 1995) Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure 3: 14071419.
  • 57
    Chapman-Smith A, Turner DL, Cronan JE, Jr, Morris TW, Wallace JC ( 1994) Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase. Biochem J 302: 881887.
  • 58
    Blanchard CZ, Chapman-Smith A, Wallace JC, Waldrop GL ( 1999) The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin. J Biol Chem 274: 3176731769.
  • 59
    Yao X, Wei D, Soden C, Jr., Summers MF, Beckett D ( 1997) Structure of the carboxy-terminal fragment of the apo-biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Biochemistry 36: 1508915100.
  • 60
    Yao X, Soden C, Jr, Summers MF, Beckett D ( 1999) Comparison of the backbone dynamics of the apo- and holo-carboxy-terminal domain of the biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase. Protein Sci 8: 307317.
  • 61
    Reddy DV, Shenoy BC, Carey PR, Sonnichsen FD ( 2000) High resolution solution structure of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii. Biochemistry 39: 25092516.
  • 62
    Lee CK, Cheong HK, Ryu KS, Lee JI, Lee W, Jeon YH, Cheong C ( 2008) Biotinoyl domain of human acetyl-CoA carboxylase: Structural insights into the carboxyl transfer mechanism. Proteins 72: 613624.
  • 63
    Cronan JE, Jr ( 2001) The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the “thumb” structure ID essential and that the domain functions as a dimer. J Biol Chem 276: 3735537364.
  • 64
    Weaver LH, Kwon K, Beckett D, Matthews BW ( 2001) Competing protein:protein interactions are proposed to control the biological switch of the E coli biotin repressor. Protein Sci 10: 26182622.
  • 65
    Holden HM, Benning MM, Haller T, Gerlt JA ( 2001) The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. Acc Chem Res 34: 145157.
  • 66
    Hamed RB, Batchelar ET, Clifton IJ, Schofield CJ ( 2008) Mechanisms and structures of crotonase superfamily enzymes—how nature controls enolate and oxyanion reactivity. Cell Mol Life Sci 65: 25072527.
  • 67
    Bilder P, Lightle S, Bainbridge G, Ohren J, Finzel B, Sun F, Holley S, Al-Kassim L, Spessard C, Melnick M, Newcomer M, Waldrop GL ( 2006) The structure of the carboxyltransferase component of acetyl-coA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme. Biochemistry 45: 17121722.
  • 68
    Benson BK, Meades G, Jr., Grove A, Waldrop GL ( 2008) DNA inhibits catalysis by the carboxyltransferase subunit of acetyl-CoA carboxylase: implications for active site communication. Protein Sci 17: 3442.
  • 69
    Meades G, Cai X, Thalji NK, Waldrop GL, de Queiroz M ( 2011) Mathematical modelling of negative feedback regulation by carboxyltransferase. IET Syst Biol 5: 220228.
  • 70
    Meades G, Jr., Benson BK, Grove A, Waldrop GL ( 2010) A tale of two functions: enzymatic activity and translational repression by carboxyltransferase. Nucleic Acids Res 38: 12171227.
  • 71
    Waldrop GL ( 2011) The role of symmetry in the regulation of bacterial carboxyltransferase. BioMol Concepts 2: 4752.
  • 72
    Zhang H, Yang Z, Shen Y, Tong L ( 2003) Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 299: 20642067.
  • 73
    Wendt KS, Schall I, Huber R, Buckel W, Jacob U ( 2003) Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase. EMBO J 22: 34933502.
  • 74
    Hall PR, Wang YF, Rivera-Hainaj RE, Zheng X, Pustai-Carey M, Carey PR, Yee VC ( 2003) Transcarboxylase 12S crystal structure: hexamer assembly and substrate binding to a multienzyme core. EMBO J 22: 23342347.
  • 75
    Diacovich L, Mitchell DL, Pham H, Gago G, Melgar MM, Khosla C, Gramajo H, Tsai SC ( 2004) Crystal structure of the beta-subunit of acyl-CoA carboxylase: structure-based engineering of substrate specificity. Biochemistry 43: 1402714036.
  • 76
    Benning MM, Haller T, Gerlt JA, Holden HM ( 2000) New reactions in the crotonase superfamily: structure of methylmalonyl CoA decarboxylase from Escherichia coli. Biochemistry 39: 46304639.
  • 77
    Engel CK, Kiema TR, Hiltunen JK, Wierenga RK ( 1998) The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J Mol Biol 275: 847859.
  • 78
    Modis Y, Filppula SA, Novikov DK, Norledge B, Hiltunen JK, Wierenga RK ( 1998) The crystal structure of dienoyl-CoA isomerase at 1.5 A resolution reveals the importance of aspartate and glutamate sidechains for catalysis. Structure 6: 957970.
  • 79
    Zhang H, Tweel B, Tong L ( 2004) Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci USA 101: 59105915.
  • 80
    Xiang S, Callaghan MM, Watson KG, Tong L ( 2009) A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim. Proc Natl Acad Sci USA 106: 2072320727.
  • 81
    Yu LP, Kim YS, Tong L ( 2010) Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc Natl Acad Sci USA 107: 2207222077.
  • 82
    Rendina AR, Felts JM, Beaudoin JD, Craig-Kennard AC, Look LL, Paraskos SL, Hagenah JA ( 1988) Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Arch Biochem Biophys 265: 219225.
  • 83
    Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ ( 2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 26132616.
  • 84
    Harwood HJ, Jr., Petras SF, Shelly LD, Zaccaro LM, Perry DA, Makowski MR, Hargrove DM, Martin KA, Tracey WR, Chapman JG, Magee WP, Dalvie DK, Soliman VF, Martin WH, Mularski CJ, Eisenbeis SA ( 2003) Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem 278: 3709937111.
  • 85
    Zhang H, Tweel B, Li J, Tong L ( 2004) Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186. Structure 12: 16831691.
  • 86
    Rajamohan F, Marr E, Reyes AR, Landro JA, Anderson MD, Corbett JW, Dirico KJ, Harwood JH, Tu M, Vajdos FF ( 2011) Structure-guided inhibitor design for human acetyl-coenzyme A carboxylase by interspecies active site conversion. J Biol Chem 286: 4151041519.
  • 87
    Madauss KP, Burkhart WA, Consler TG, Cowan DJ, Gottschalk WK, Miller AB, Short SA, Tran TB, Williams SP ( 2009) The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist. Acta Cryst D65: 449461.
  • 88
    Corbett JW, Freeman-Cook KD, Elliott R, Vajdos F, Rajamohan F, Kohls D, Marr E, Zhang H, Tong L, Tu M, Murdande S, Doran SD, Houser JA, Song W, Jones CJ, Coffey SB, Buzon L, Minich ML, Dirico KJ, Tapley S, McPherson RK, Sugarman E, Harwood HJ, Jr, Esler W ( 2010) Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2. Bioorg Med Chem Lett 20: 23832388.
  • 89
    Lombard J, Moreira D ( 2011) Early evolution of the biotin-dependent carboxylase family. BMC Evol Biol 11: 232.
  • 90
    Strope PK, Nickerson KW, Harris SD, Moriyama EN ( 2011) Molecular evolution of urea amidolyase and urea carboxylase in fungi. BMC Evol Biol 11: 80.
  • 91
    Hall PR, Zheng R, Antony L, Pusztai-Carey M, Carey PR, Yee VC ( 2004) Transcarboxylase 5S structures: assembly and catalytic mechanism of a multienzyme complex subunit. EMBO J 23: 36213631.
  • 92
    Studer R, Dahinden P, Wang WW, Auchli Y, Li XD, Dimroth P ( 2007) Crystal structure of the carboxyltransferase domain of the oxaloacetate decarboxylase Na+ pump from Vibrio cholerae. J Mol Biol 367: 547557.
  • 93
    Zeczycki TN, St Maurice M, Jitrapakdee S, Wallace JC, Attwood PV, Cleland WW ( 2009) Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli. Biochemistry 48: 43054313.
  • 94
    DeLano WL ( 2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. The PyMOL Molecular Graphics System DeLano Scientific, San Carlos, CA, USA.
  • 95
    Thoden JB, Firestine S, Nixon A, Benkovic SJ, Holden HM ( 2000) Molecular structure of Escherichia coli PurT-encoded glycinamide ribonucleotide transformylase. Biochemistry 39: 87918802.