SEARCH

SEARCH BY CITATION

References

  • 1
    Jacob F, Monod J ( 1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318356.
  • 2
    Huber RE, Kurz G, Wallenfels K ( 1976) A quantitation of the factors which affect the hyrolase and trangalactosylase activities of β-galactosidase (E. coli) on lactose. Biochemistry 15: 19942001.
  • 3
    Wyckoff HW, Doscher M, Tsernoglou D, Inagami T, Johnson LN, Hardman KD, Allewell NM, Kelly DM, Richards FM ( 1967) Design of a diffractometer and flow cell system for X-ray analysis of crystalline proteins with applications to the crystal chemistry of ribonuclease-S. J Mol Biol 27: 563578.
  • 4
    Matthews BW ( 1974) Determination of molecular weight from protein crystals. J Mol Biol 82: 513526.
  • 5
    Fowler A, Zabin I ( 1978) Amino acid sequence of β-galactosidase. XI. Peptide ordering procedures and the complete sequence. J Biol Chem 253: 55215525.
  • 6
    Kalnins A, Otto K, Ruther U, Muller-Hill B ( 1983) Sequence of the lacZ gene of Escherichia coli. EMBO J 2: 593597.
  • 7
    Jacobson RH, Zhang XJ, DuBose RF, Matthews BW ( 1994) Three-dimensional structure of β-galactosidase from E. coli. Nature 369: 761766.
  • 8
    Juers DH, Wigley RH, Zhang X, Huber RE, Tronrud DE, Matthews BW ( 2000) High resolution refinement of β-galactosidase in a new crystal form reveals multiple metal binding sites and provides a structural basis for α-complementation. Protein Sci 9: 16851699.
  • 9
    Juers DH, Huber RE, Matthews BW ( 1999) Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between β-galactosidase and other glycohydrolases. Protein Sci 8: 122136.
  • 10
    Ullmann A ( 1992) Complementation in β-galactosidase: from protein structure to genetic engineering. Bioessays 14: 201205.
  • 11
    Ullmann A, Jacob F, Monod J ( 1967) Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of Escherichia coli. J Mol Biol 24: 339343.
  • 12
    Welply JK, Fowler AV, Zabin I ( 1981) β-Galactosidase alpha-complementation; overlapping sequences. J Biol Chem 256: 68046810.
  • 13
    Welply JK, Fowler A, Zabin I ( 1981) β-Galactosidase α-complementation; effect of single amino acid substitutions. J Biol Chem 256: 68116816.
  • 14
    Gallagher CN, Huber RE ( 1997) Monomer-dimer equilibrium of uncomplemented M15 β-galactosidase from Escherichia coli. Biochemistry 36: 12811286.
  • 15
    Gallagher CN, Huber RE ( 1998) Studies of the M15 β-galactosidase complementation process. J Protein Chem 17: 131141.
  • 16
    Craig DB, Dovichi NJ ( 1998) E. coli β-galactosidase is heterogeneous with respect to the activity of individual molecules. Can J Chem 76: 623626.
  • 17
    Shoemaker GK, Juers DH, Coombs JML, Matthews BW, Craig DB ( 2003) Crystallization of β-galactosidase does not reduce the range of activity of individual molecules. Biochemistry 42: 17071710.
  • 18
    Lederberg J ( 1950) The beta-D-galactosidase of Escherichia coli, strain K-12. J Bacteriol 60: 381392.
  • 19
    Cohn M, Monod J ( 1951) Purification et proprietes de la β-galactosidase (lactase) d'Echerichia coli. Biochim Biophys Acta 7: 153174.
  • 20
    Sinnott ML, Withers SG ( 1974) The β-galactosidase-catalysed hydrolyses of β-D-galactopyranosyl salts. Rate limiting generation of an enzyme-bound galactopyranosyl cation in a process dependent only on aglycone acidity. Biochem J 143: 751762.
  • 21
    Wallenfels K, Weil R, Beta-galactosidase. In: Boyer P, Ed. ( 1972) The enzymes VII, Academic Press, New York.
  • 22
    Huber RE, Gaunt MT ( 1983) Importance of hydroxyls at positions 3, 4, and 6 for binding to the galactose site of β-galactosidase (Escherichia coli). Arch Biochem Biophys 220: 263271.
  • 23
    Nam Shin JE, Maradufu A, Marion J, Perlin AS ( 1980) Specificity of alpha- and β-D-galactosidase towards analogs of D-galactopyranosides modified at C-4 or C-5. Carbohydr Res 84: 328335.
  • 24
    Brockhaus M, Dettinger HM, Kurz G, Lehmann J, Wallenfels K ( 1979) Participation of HO-2 in the cleavage of β-galactosides by the β-D-galactosidase from E. coli. Carbohydr Res 69: 264268.
  • 25
    McCarter JD, Adam MJ, Withers SG ( 1992) Binding energy and catalysis. Fluorinated and deoxygenated glycosides as mechanistic probes of Escherichia coli (LacZ) beta-galactosidase. Biochem J 286: 721727.
  • 26
    Huber RE, Hurlburt KL ( 1986) Reversion reactions of β-galactosidase (Escherichia coli). Arch Biochem Biophys 246: 411418.
  • 27
    Loeffler RS, Sinnott ML, Sykes BD, Withers SG ( 1979) Interaction of the lac Z β-galactosidase of Escherichia coli with some β-D-galactopyranoside competitive inhibitors. Biochem J 177: 145152.
  • 28
    Wentworth DF, Wolfenden R ( 1974) Slow binding of D-galactal, a “reversible” inhibitor of bacterial β-galactosidase. Biochemistry 13: 47154720.
  • 29
    Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, Matthews BW ( 2001) A structural view of the action of Escherichia coli (lacZ) β-galactosidase. Biochemistry 40: 1478114794.
  • 30
    Egal R ( 1979) The lac-operon for lactose degradation, or rather for the utilization of galactosylglycerols from galactolipids? J Theor Biol 79: 117119.
  • 31
    DeLano WL ( 2002) The PyMOL molecular graphics system on the World Wide Web. Available at: http://www.pymol.org, Jan. 4, 2011.
  • 32
    Neville MC, Ling GN ( 1967) Synergistic activation of β-galactosidase by Na+ and Cs+. Arch Biochem Biophys 118: 596610.
  • 33
    Xu J, McRae MA, Harron S, Rob B, Huber RE ( 2004) A study of the relationship of interactions between Asp-201, Na+ or K+, and galactosyl C6-hydroxyl and their effects on binding and reactivity of β-galactosidase. Biochem Cell Biol 82: 275284.
  • 34
    Wallenfels K, Malhotra OP, Dabich D ( 1960) Untersuchungen uber milchsuckerspaltende enzyme. VIII Der einfluss des kationen-milieus auf die aktivitat der β-galaktosidase von E. coli ML 308. Biochemi Zeit 333: 377394.
  • 35
    Becker VE, Evans HJ ( 1969) The influence of monovalent cations and hydrostatic pressure on β-galactosidase activity. Biochim Biophys Acta 191: 95104.
  • 36
    Case GS, Sinnott ML ( 1973) The role of magnesium ions in β-galactosidase-catalysed hydrolyses. Biochem J 133: 99104.
  • 37
    Hill JA, Huber RE ( 1971) Effects of various concentrations of Na+ and Mg2+ on the activity of β-galactosidase. Biochim Biophys Acta 250: 530537.
  • 38
    Huber RE, Parfett C, Woulfe-Flanagan H, Thompson DJ ( 1979) Interaction of divalent cations with β-galactosidase (Escherichia coli). Biochemistry 18: 40904095.
  • 39
    Sinnott ML, Viratelle OM, Withers SG ( 1975) pH and magnesium ion-dependence of the hydrolysis of β-D-galactopyranosyl pyridinium salts catalysed by Escherichia coli β-galactosidase. Biochem Soc Trans 3: 10061009.
  • 40
    Sinnott ML, Withers SG, Viratelle OM ( 1978) The necessity of magnesium cation for acid assistance of aglycone departure in catalysis by Escherichia coli (lacZ) β-galactosidase. Biochem J 175: 539536.
  • 41
    Tenu JP, Viratelle OM, Yon J ( 1972) Kinetic study of the activation process of β-galactosidase from Escherichia coli by Mg2+. Eur J Biochem 26: 112118.
  • 42
    Reithel FJ, Kim JC ( 1960) Studies on the β-galactosidase isolated from Escherichia coli ML308. I. The effect of some ions on enzymatic activity. Arch Biochem Biophys 90: 271277.
  • 43
    Strom R, Attardi DG, Forsen S, Turini P, Celada F, Antonini E ( 1971) The activation of β-galactosidase by divalent and monovalent cations. Eur J Biochem 23: 118124.
  • 44
    Flaherty KM, DeLuca-Flaherty C, McKay DB ( 1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623628.
  • 45
    Kayne FJ ( 1971) Thallium (I) activation of pyruvate kinase. Arch Biochem Biophys 143: 232239.
  • 46
    Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH ( 1994) Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemistry 33: 63016309.
  • 47
    O'Brien MC, McKay DB ( 1995) How potassium affects the activity of the molecular chaperone Hsc70. I. Potassium is required for optimal ATPase activity. J Biol Chem 270: 22472250.
  • 48
    Villeret V, Huang S, Fromm HJ, Lipscomb WN ( 1995) Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 92: 89168920.
  • 49
    Wilbanks SM, McKay DB ( 1995) How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270: 22512257.
  • 50
    Sutendra G, Wong S, Fraser ME, Huber RE ( 2007) β-Galactosidase (Escherichia coli) has a second catalytically important Mg2+ site. Biochem Biophys Res Commun 352: 566570.
  • 51
    Lo S, Dugdale ML, Jeerh N, Ku T, Roth NJ, Huber RE ( 2010) Studies of Glu-416 variants of β-Galactosidase (E. coli) show that the active site Mg2+ is not important for structure and indicate that the main role of Mg2+ is to mediate optimization of active site chemistry. Protein J 29: 2631.
  • 52
    Juers DH, Rob B, Dugdale ML, Rahimzadeh N, Giang C, Lee M, Matthews BW, Huber RE ( 2009) Direct and indirect roles of His-418 in metal binding and in the activity of β-galactosidase (E. coli). Protein Sci 18: 12811292.
  • 53
    Langridge J ( 1968) Genetic evidence for the disposition of the substrate binding site of β-galactosidase. Genetics 60: 12601267.
  • 54
    Langridge J ( 1969) Mutations conferring quantitative and qualitative increases in β-galactosidase activity in Escherichia coli. Mol Gen Genet 105: 7483.
  • 55
    Langridge J, Campbell JH ( 1968) Classification and intragenic position of mutations in the β-galactosidase gene of Escherichia coli. Mol Gen Genet 103: 339347.
  • 56
    Martinez-Bilbao M, Holdsworth RE, Edwards LA, Huber RE ( 1991) A highly reactive β-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794. J Biol Chem 266: 49794986.
  • 57
    Martinez-Bilbao M, Huber RE ( 1994) Substitutions for Gly-794 show that binding interactions are important determinants of the catalytic action of β-galactosidase (Escherichia coli). Biochem Cell Biol 72: 313319.
  • 58
    Juers DH, Hakda S, Matthews BW, Huber RE ( 2003) Structural basis for the altered activity of Gly794 variants of Escherichia coli β-galactosidase. Biochemistry 42: 1350513511.
  • 59
    Dugdale ML, Dymianiw DL, Minhas BK, D'Angelo I, Huber RE ( 2010) Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (E. coli). Biochem Cell Biol 88: 861869.
  • 60
    Dugdale ML, Vance ML, Wheatley RW, Driedger MR, Nibber A, Tran A, Huber RE ( 2010) The importance of Arg-599 of β-galactosidase (E. coli) as an anchor for the open conformations of Phe-601 and the active site loop. Biochem Cell Biol 88: 969979.
  • 61
    Jancewicz L, The role of Ser-796 in the loop (residues 794–803) of β-galactosidase of Escherichia coli. In: ( 2008) Biological sciences, Ph.D thesis. University of Calgary, Calgary, p 142.
  • 62
    Sutendra G, The role of residues 795–802 of the loop with emphasis on Glu-797 and a second important Mg2+ site in the catalytic mechanism of β-galactosdiase in Escherichia coli. In: ( 2005) Biological sciences. University of Calgary, Calgary, p 166.
  • 63
    Jancewicz LJ, Wheatley RW, Sutendra G, Lee M, Fraser ME, Huber RE ( 2012) Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop. Arch Biochem Biophys 517: 111122.
  • 64
    Huber RE, Hakda S, Cheng C, Cupples CG, Edwards RA ( 2003) Trp-999 of β-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and Synthesis of allolactose, the natural Lac operon inducer. Biochemistry 42: 17961803.
  • 65
    Drickamer K ( 1997) Making a fitting choice: common aspects of sugar-binding sites in plant and animal lectins. Structure 5: 465468.
  • 66
    De Bruyn CK, Yde M ( 1977) Binding of alkyl 1-thio-β-D-galactopyranosides to β-D-galactosidase from E. coli. Carbohydr Res 56: 153164.
  • 67
    Wheatley RW, Kappelhoff JC, Hahn JN, Dugdale ML, Dutkoski MJ, Tamman SD, Fraser ME, Huber RE ( 2012) Substitution for Asn460 cripples β-galactosidase (E. coli) by increasing substrate affinity and decreasing transition state stability. Arch Biochem Biophys 521: 5161.
  • 68
    Roth NJ, Huber RE ( 1996) The beta-galactosidase (Escherichia coli) reaction is partly facilitated by interactions of His-540 with the C6 hydroxyl of galactose. J Biol Chem 271: 1429614301.
  • 69
    Kappelhoff JC, Liu SYJ, Dugdale ML, Dymianiw DL, Linton LR, Huber RE ( 2009) Practical considerations when using temperature to obtain rate constants and activation thermodynamics of enzymes with two catalytic steps: native and N460T-β-galactosidase (E. coli) as examples. Protein J 28: 96103.
  • 70
    Herrchen M, Legler G ( 1984) Identification of an essential carboxylate group at the active site of lacZ β-galactosidase from Escherichia coli. Eur J Biochem 138: 527531.
  • 71
    Gebler JC, Aebersold R, Withers SG ( 1992) Glu-537, not Glu-461, is the nucleophile in the active site of (lacZ) β-galactosidase from Escherichia coli. J Biol Chem 267: 1112611130.
  • 72
    Cupples CG, Miller JH, Huber RE ( 1990) Determination of the roles of Glu-461 in β-galactosidase (E. coli) using site-specific mutagenesis. J Biol Chem 265: 55125518.
  • 73
    Huber RE, Chivers PT ( 1993) β-Galactosidase of Escherichia coli with substitutions for Glu-461 can be activated by nucleophiles and can form β-D-galactosyl adducts. Carbohydr Res 250: 918.
  • 74
    Yuan J, Martinez-Bilbao M, Huber RE ( 1994) Substitutions for Glu-537 of β-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J 299: 527531.
  • 75
    Fink AL ( 1977) Cryoenzymology: The study of enzyme mechanisms at subzero temperatures. Acc Chem Res 10: 233239.
  • 76
    Sinnott ML, Souchard IJL ( 1973) The mechanism of action of β-galactosidase: effect of aglycone nature and alpha deuterium substitution on the hydrolysis of some β-D-galactopyranosides: rate limiting degalactosylation; the pH-dependence of galactosylation and degalactosylation. Biochem J 133: 8998.
  • 77
    Gruninger RJ, Dobing S, Smith AD, Bruder LM, Selinger LB, Wieden H-J, Mosimann SC ( 2012) Substrate binding in protein tyrosine phosphatase-like inositol polyphosphatases. J Biol Chem 287: 97229730.
  • 78
    Isin EM, Guengerich FP ( 2006) Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. J Biol Chem 281: 91279136.
  • 79
    Wang L-H, Tsai A-L, Hsu P-Y ( 2001) Substrate binding is the rate-limiting step in thromboxane synthase catalysis. J Biol Chem 276: 1473714743.
  • 80
    Rosenberg S, Kirsch JF ( 1981) Oxygen-18 leaving group isotope effects on the hydrolysis of nitrophenyl glycosides. 1. β-galactosidase-catalyzed hydrolysis. Biochemistry 20: 31893196.
  • 81
    Selwood T, Sinnott M ( 1990) A solvent-isotope-effect study of protein transfer during catalysis by Escherichia coli (lacZ) β-galactosidase. Biochem J 268: 317323.
  • 82
    Bras NF, Fernandes PA, Ramos MJ ( 2010) QM/MM studies on the β-galactosidase catalytic mechanism: hydrolysis and transglycosylation reactions. J Chem Theory Comput 6: 421433.
  • 83
    Deslongchamps P ( 1993) Intramolecular strategies and stereoelectric effects—glycosides hydrolysis revisited. Pure Appl Chem 65: 11611178.
  • 84
    Huber RE, Brockbank RL ( 1987) Strong inhibitory effect of furanoses and sugar lactones on β-galactosidase of Escherichia coli. Biochemistry 26: 15261531.
  • 85
    Huber RE, Hlede IY, Roth NJ, McKenzie KC, Ghuman KK ( 2001) His-391 of beta-galactosidase (Escherichia coli) promotes catalyses by strong interactions with the transition state. Biochem Cell Biol 79: 183193.
  • 86
    Kappelhoff JC, The roles of Asn-460 in the active site of β-galactosidase from Escherichia coli. In: ( 2005) Biological sciences, Ph.D. thesis. University of Calgary, Calgary, AB, p 188.
  • 87
    Roth NJ, Rob B, Huber RE ( 1998) His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis. Biochemistry 37: 1009910107.
  • 88
    Schramm VL ( 2003) Enzyme transition state poise and transition state analogues. Acc Chem Res 36: 588596.
  • 89
    Lee YM ( 1969) Inhibition of β-galactosidases by D-galactal. Biochem Biophys Res Commun 35: 161167.
  • 90
    Lehmann J, Schroter E ( 1972) Reaktionen enolisher zuckerderivate. VIII. Die wirkung von β-D-glucosidase and β-D-galaktosidase auf D-glucal und D-galactal. Carbohydr Res 23: 359368.
  • 91
    Fink AL, Angelides KJ ( 1975) The β-galactosidase-catalyzed hydrolysis of o-nitrophenol-β-D-galactoside at subzero temperatures: evidence for a galactosyl-enzyme intermediate. Biochem Biophys Res Commun 64: 701708.
  • 92
    Sinnott ML ( 1978) Ions, ion-pairs and catalysis by the lacZ β-galactosidase of Escherichia coli. FEBS Lett 94: 19.
  • 93
    Penner RM, Roth NJ, Rob B, Lay H, Huber RE ( 1999) Tyr-503 of beta-galactosidase (Escherichia coli) plays an important role in degalactosylation. Biochem Cell Biol 77: 229236.
  • 94
    Roth NJ, Penner RM, Huber RE ( 2003) Beta-galactosidases (Escherichia coli) with double substitutions show that Tyr-503 acts independently of Glu-461 but cooperatively with Glu-537. J Protein Chem 22: 663668.
  • 95
    Deschavanne PJ, Viratelle OM, Yon JM ( 1978) Conformational adaptability of the active site of β-galactosidase. J Biol Chem 253: 833837.
  • 96
    Huber RE, Gaunt MT, Hurlburt KL ( 1985) Binding and reactivity at the “glucose” site of galactosyl-beta-galactosidase (Escherichia coli). Arch Biochem Biophys 234: 151160.
  • 97
    Huber RE, Wallenfels K, Kurz G ( 1975) The action of β-galactosidase (Escherichia coli) on allolactose. Can J Biochem 53: 10351038.
  • 98
    Viratelle OM, Yon JM ( 1973) Nucleophilic competition in some β-galactosidase reactions. Eur J Biochem 33: 110116.
  • 99
    Burstein C, Cohn M, Kepes A, Monod J ( 1965) Role of lactose and its metabolic products in the induction of the lactose operon in Escherichia coli. Biochim Biophys Acta 95: 634639.
  • 100
    Jobe A, Bourgeois S ( 1972) Lac repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol 69: 397408.