• 1
    Rhodes DA, de Bono B, Trowsdale J ( 2005) Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 116: 411417.
  • 2
    Vernet C, Boretto J, Mattei MG, Takahashi M, Jack LJ, Mather IH, Rouquier S, Pantarotti P ( 1993) Evolutionary study of multigenic families mapping close to the human MHC class I region. J Mol Evol 37: 600612.
  • 3
    Henry J, Ribouchon MT, Offer C, Pontarotti P ( 1997) B30.2-like domain proteins: a growing family. Biochem Biophys Res Commun 235: 162165.
  • 4
    Ponting C, Schultz J, Bork P ( 1997) SPRY domains in ryanodine receptors (Ca(2+)-release channels). Trends Biochem Sci 22: 193194.
  • 5
    Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T., Schultz J, Ponting CP, Bork P ( 2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32: D142D144.
  • 6
    Henry J, Ribouchon M, Depetris D, Mattei M, Offer C, Tazi-Ahnini R, Pontarotti P ( 1997) Cloning, structural analysis, and mapping of the B30 and B7 multigenic families to the major histocompatibility complex (MHC) and other chromosomal regions. Immunogenetics 46: 383395.
  • 7
    Seto MH, Liu HL, Zajchowski DA, Whitlow M ( 1999) Protein fold analysis of the B30.2-like domain. Proteins 35: 235249.
  • 8
    Woo JS, Imm JH, Min CK, Kim KJ, Cha SS, Oh BH ( 2006) Structural and functional insights into the B30.2/SPRY domain. EMBO J 25: 13531363.
  • 9
    Kuang Z, Yao S, Xu Y, Lewis RS, Low A, Masters SL, Willson TA, Kolesnik TB, Nicholson SE, Garrett TJ, Norton RS ( 2009) SPRY domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding. J Mol Biol 386: 662674.
  • 10
    Grutter C, Briand C, Capitani G, Mittl PR, Papin S, Tschopp J, Grutter MG ( 2006) Structure of the PRYSPRY-domain: implications for autoinflammatory diseases. FEBS Lett 580: 99106.
  • 11
    Masters SL, Yao S, Willson TA, Zhang JG, Palmer KR, Smith, BJ, Babon JJ, Nicola NA, Norton RS, Nicholson SE ( 2006) The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4-binding residues. Nat Struct Mol Biol 13: 7784.
  • 12
    Ishaq M, Ma L, Wu X, Mu Y, Pan J, Hu J, Hu T, Fu Q, Guo D ( 2009) The DEAD-box RNA helicase DDX1 interacts with RelA and enhances nuclear factor kappaB-mediated transcription. J Cell Biochem 106: 296305.
  • 13
    Fackelmayer FO, Dahm K, Renz A, Ramsperger U, Richter A ( 1994) Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 221: 749757.
  • 14
    Cao F, Chen Y, Cierpicki T, Liu Y, Basrur V, Lei M, Dou Y ( 2010) An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS One 5: e14102.
  • 15
    Chen Y, Cao F, Wan B, Dou Y, Lei M ( 2012) Structure of the SPRY domain of human Ash2L and its interactions with RbBP5 and DPY30. Cell Res 22: 598602.
  • 16
    Tae H, Wei L, Willemse H, Mirza S, Gallant EM, Board PG, Dirksen RT, Casarotto MG, Dulhunty A ( 2011) The elusive role of the SPRY2 domain in RyR1. Channels 5: 148160.
  • 17
    Zhai L, Dietrich A, Skurat AV, Roach PJ ( 2004) Structure-function analysis of GNIP, the glycogenin-interacting protein. Arch Biochem Biophys 421: 236242.
  • 18
    Skurat AV, Dietrich AD, Zhai L, Roach PJ ( 2002) GNIP, a novel protein that binds and activates glycogenin, the self-glucosylating initiator of glycogen biosynthesis. J Biol Chem 277: 1933119338.
  • 19
    Harada H, Harada Y, O'Brian DP, Rice, DS, Naeve CW, Downing JR ( 1999) HERF1, a novel hematopoiesis-specific RING finger protein, is required for terminal differentiation of erythroid cells. Mol Cell Biol 19: 38083815.
  • 20
    Rajkovic A, Lee JH, Yan C, Matzuk MM ( 2002) The ret finger protein-like 4 gene, Rfpl4, encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells. Mech Dev 112: 173177.
  • 21
    Suzumori N, Burns KH, Yan W, Matzuk MM ( 2003) RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci USA 100: 550555.
  • 22
    Schweiger S, Foerster J, Lehmann T, Suckow V, Muller YA, Walter G, Davies T, Porter H, van Bokhoven H, Lunt PW, Traub P, Ropers HH ( 1999) The Opitz syndrome gene product, MID1, associates with microtubules. Proc Natl Acad Sci USA 96: 27942799.
  • 23
    Quaderi NA, Schhweiger S, Gaudenz K, Franco B, Rugarli EI, Berger W, Feldman GJ, Volta M, Andolfi G, Gilgenkrantz S, Marion RW, Hennekam RC, Opitz JM, Muenke M, Ropers HH, Ballabio A ( 1997) Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 17: 285291.
  • 24
    Cox TC, Allen LR, Cox LL, Hopwood B, Goodwin B, Haan E, Suthers GK ( 2000) New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome. Hum Mol Genet 9: 25532562.
  • 25
    Alberts BAJ, Lewis J, Raff M, Roberts K, Walters P ( 2002) Molecular biology of the cell; 4th Edition. New York and London: Garland Science.
  • 26
    Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K ( 2006) Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol 24: 353389.
  • 27
    Inohara N, Nunez G ( 2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3: 371382.
  • 28
    Loo YM, Gale M Jr ( 2011) Immune signaling by RIG-I-like receptors. Immunity 34: 680692.
  • 29
    Creagh EM, O Neill LAJ ( 2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27: 352357.
  • 30
    Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL ( 2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci USA 2006: 103: 99829987.
  • 31
    James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J (YEAR) Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci USA 104: 6200-6205.
  • 32
    Rhodes DA, Trowsdale J ( 2007) TRIM21 is a trimeric protein that binds IgG Fc via the B30.2 domain. Mol Immunol 44: 24062414.
  • 33
    Higgs R, Ni Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA ( 2008) The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 181: 17801786.
  • 34
    Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU ( 2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916920.
  • 35
    Castanier C, Zemirli N, Portier A, Garcin D, Bidere N, Vazquez A, Arnoult D ( 2012) MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors. BMC Biol 10: 44.
  • 36
    Zha J, Han KJ, Xu LG, He W, Zhou Q, Chen D, Zhai Z, Shu HB ( 2006) The Ret finger protein inhibits signaling mediated by the noncanonical and canonical IkappaB kinase family members. J Immunol 176: 10721080.
  • 37
    Shi, M, Deng W, Bi E, Mao K, Ji Y, Lin G, Wu X, Tao Z, Li Z, Cai X, Sun S, Xiang C, Sun B ( 2008) TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol 9: 369377.
  • 38
    Oshiumi H, Matsumoto M, Hatakeyama S, Seya T ( 2009) Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284: 807817.
  • 39
    Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A ( 2001) The tripartite motif family identifies cell compartments. EMBO J 20: 21402151.
  • 40
    Deshaies RJ, Joazeiro CA ( 2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399434.
  • 41
    Meroni G, Diez-Roux G ( 2005) TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 27: 11471157.
  • 42
    Mische CC, Javanbakht H, Song B, Diaz-Griffero F, Stremlau M, Strack B, Si Z, Sodroski J ( 2005) Retroviral restriction factor TRIM5alpha is a trimer. J Virol 79: 1444614450.
  • 43
    Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A ( 2009) Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5: 439449.
  • 44
    Gack MU, Kirchhofer A, Shin YC, Inn KS, Liang C, Cui S, Myong S, Ha T, Hopfner KP, Jung JU ( 2008) Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci USA 105: 1674316748.
  • 45
    Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T ( 2010) The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8: 496509.
  • 46
    Zurek B, Schoultz I, Neerincx A, Napolitano LM, Birkner K, Bennek E, Sellge G, Lerm M, Meroni G, Soderholm JD, Kufer TA ( 2012) TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One 7: e41255.
  • 47
    Srivastava S, Cai X, Li Z, Sun Y, Skolnik EY ( 2012) Phosphatidylinositol-3-kinase C2beta and TRIM27 function to positively and negatively regulate IgE receptor activation of mast cells. Mol Cell Biol [VOL: PAGE #S].
  • 48
    Cai X, Srivastava S, Sun Y, Li Z, Wu H, Zuvela-Jelaska L, Li J, Salamon RS, Backer JM, Skolnik EY ( 2011) Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2beta. Proc Natl Acad Sci USA 108: 2007220077.
  • 49
    Hu Y, Mao K, Zeng Y, Chen S, Tao Z, Yang C, Sun S, Wu X, Meng G, Sun B ( 2010) Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production. J Immunol 185: 76997705.
  • 50
    Sebastian S, Luban J ( 2005) TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2: 40.
  • 51
    Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J ( 2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci USA 103: 55145519.
  • 52
    Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ ( 2006) Proteasome inhibitors uncouple rhesus TRIM5alpha restriction of HIV-1 reverse transcription and infection. Proc Natl Acad Sci USA 103: 74657470.
  • 53
    Lee K, Kewalramani VN ( 2004) In defense of the cell: TRIM5alpha interception of mammalian retroviruses. Proc Natl Acad Sci USA 101: 1049610497.
  • 54
    Yap MW, Nisole S, Lynch C, Stoye JP ( 2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101: 1078610791.
  • 55
    Kono K, Bozek K, Domingues FS, Shioda T, Nakayama EE ( 2009) Impact of a single amino acid in the variable region 2 of the Old World monkey TRIM5alpha SPRY (B30.2) domain on anti-human immunodeficiency virus type 2 activity. Virology 388: 160168.
  • 56
    Yap MW, Nisole S, Stoye JP ( 2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15: 7378.
  • 57
    Diaz-Griffero F, Perron M, McGee-Estrada K, Hanna R, Maillard PV, Trono D, Sodroski J ( 2008) A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 378: 233242.
  • 58
    Biris N, Yang Y, Taylor AB, Tomashevski A, Guo M, Hart PJ, Diaz-Griffero F, Ivanov DN ( 2012) Structure of the rhesus monkey TRIM5alpha PRYSPRY domain, the HIV capsid recognition module. Proc Natl Acad Sci USA.
  • 59
    Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, Kingma DW, Horwitz ME, Mansfield E, Holland SM, O'Shea JJ, Rosenberg HF, Malech HL, Kastner DL ( 2000) The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 95: 32233231.
  • 60
    Fairbrother WJ, Gordon NC, Humke EW, O'Rourke KM, Starovasnik MA, Yin JP, Dixit VM ( 2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci 10: 19111918.
  • 61
    Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grutter C, Grutter M, Tschopp J ( 2007) The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14: 14571466.
  • 62
    Chae JJ, Komarrow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL ( 2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11: 591604.
  • 63
    Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, Sagara J, Ferdandes-Alnemri T, Alnemri ES ( 2006) Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ 13: 236249.
  • 64
    Yoshimi R, Chang TH, Wang H, Atsumi T, Morse HC III, Ozato K ( 2009) Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-kappaB-dependent cytokine expression in fibroblasts. J Immunol 182: 75277538.
  • 65
    Strandberg, L, Ambrosi A, Espinosa A, Ottosson L, Eloranta ML, Zhou W, Elfving A, Greenfield E, Kuchroo VK, Wahren-Herlenius M ( 2008) Interferon-alpha induces up-regulation and nuclear translocation of the Ro52 autoantigen as detected by a panel of novel Ro52-specific monoclonal antibodies. J Clin Immunol 28: 220231.
  • 66
    Rajsbaum R, Stoye JP, O'Garra A ( 2008) Type I interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur J Immunol 38: 619630.
  • 67
    Ghillani P, Andre C, Toly C, Rouquette AM, Bengoufa D, Nicaise P, Goulvestre C, Gleizes A, Dragon-Durey MA, Alyanakian MA, Chretien P, Chollet-Martin S, Musset L, Weill B, Johanet C ( 2011) Clinical significance of anti-Ro52 (TRIM21) antibodies non-associated with anti-SSA 60kDa antibodies: results of a multicentric study. Autoimmun Rev 10: 509513.
  • 68
    Fujimoto M, Shimozuma M, Yazawa N, Kubo M, Ihn H, Sato S, Tamaki T, Kikuchi K, Tamaki K ( 1997) Prevalence and clinical relevance of 52-kDa and 60-kDa Ro/SS-A autoantibodies in Japanese patients with systemic sclerosis. Ann Rheum Dis 56: 667670.
  • 69
    Espinosa A, Hennig J, Ambrosi A, Anandapadmanaban M, Abelius MS, Sheng Y, Nyberg F, Arrowsmith CH, Sunnerhagen M, Wahren-Herlenius M ( 2011) Anti-Ro52 autoantibodies from patients with Sjogren's syndrome inhibit the Ro52 E3 ligase activity by blocking the E3/E2 interface. J Biol Chem 286: 3647836491.
  • 70
    McEwan WA, Mallery DL, Rhodes DA, Trowsdale J, James LC ( 2011) Intracellular antibody-mediated immunity and the role of TRIM21. Bioessays 33: 803809.
  • 71
    Higgs R, Lazzari E, Wynne C, Ni Gabhann J, Espinosa A, Wahren-Herlenius M, Jefferies CA ( 2010) Self protection from anti-viral responses–Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS One 5: e11776.
  • 72
    Stacey KB, Breen E, Jefferies CA ( 2012) Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. PLoS One 7: e34041.
  • 73
    Mallery DL, McEwan WA, Bidgood SR, Towers GF, Johnson CM, James LC ( 2010) Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci USA 107: 1998519990.
  • 74
    Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M ( 1977) The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem 80: 319324.
  • 75
    Keeble AH, Khan Z, Forster A, James LC ( 2008) TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proc Natl Acad Sci USA 15: 60456050.
  • 76
    Filippakopoulos P, Low A, Sharpe TD, Uppenberg J, Yao S, Kuang Z, Savitsky P, Lewis RS, Nicholson SE, Norton RS, Bullock An ( 2010) Structural basis for Par-4 recognition by the SPRY domain- and SOCS box-containing proteins SPSB1, SPSB2, and SPSB4. J Mol Biol 401: 389402.
  • 77
    Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ ( 2002) The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27: 235241.
  • 78
    Babon JJ, Sabo JK, Zhang JG, Nicola NA, Norton RS ( 2009) The SOCS box encodes a hierarchy of affinities for Cullin5: implications for ubiquitin ligase formation and cytokine signalling suppression. J Mol Biol 387: 162174.
  • 79
    Kuang Z, Lewis RS, Curtis JM, Zhan Y, Saunders BM, Babon JJ, Kolesnik TB, Low A, Masters SL, Willson TA, Kedzierski L, Yao S, Handman E, Norton RS, Nicholson SE ( 2010) The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. J Cell Biol 190: 129141.
  • 80
    Nishiya T, Matsumoto K, Maekawa S, Kajita E, Horinouchi T, Fujimuro M, Ogasawara K, Uehara T, Miwa S ( 2011) Regulation of inducible nitric oxide synthase by the SPRY domain- and SOCS box-containing proteins. J Biol Chem.
  • 81
    Lewis RS, Kolesnik TB, Kuang Z, D'Cruz AA, Blewitt ME, Masters SL, Low A, Willson T, Norton RS, Nicholson SE ( 2011) TLR regulation of SPSB1 controls inducible nitric oxide synthase induction. J Immunol 187: 37983805.
  • 82
    Stuehr DJ, Nathan CF ( 1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169: 15431555.
  • 83
    Kugler JM, Woo JS, Oh BH, Lasko P ( 2010) Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors. Mol Cell Biol 30: 17691782.
  • 84
    Woo JS, Suh HY, Park SY, Oh BH ( 2006) Structural basis for protein recognition by B30.2/SPRY domains. Mol Cell 24: 967976.
  • 85
    Weinert C, Grutter C, Roschitzki-Voser H, Mittl PR, Grutter MG ( 2009) The crystal structure of human pyrin b30.2 domain: implications for mutations associated with familial Mediterranean fever. J Mol Biol 394: 226236.
  • 86
    Park EY, Kwon OB, Jeong BC, Yi JS, Lee CS, Ko YG, Song HK ( 2010) Crystal structure of PRY-SPRY domain of human TRIM72. Proteins 78: 790795.
  • 87
    Holm L, Rosenstrom P ( 2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545549.
  • 88
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG ( 2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 29472948.
  • 89
    Howe K, Bateman A, Durbin R ( 2002) QuickTree: building huge neighbour-joining trees of protein sequences. Bioinformatics 18: 15461547.