• 1
    Gitai Z ( 2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120: 577586.
  • 2
    Jensen GJ, Briegel A ( 2007) How electron cryotomography is opening a new window onto prokaryotic ultrastructure. Curr Opin Struct Biol 17: 260267.
  • 3
    Shively JM, Ball F, Brown DH, Saunders RE ( 1973) Functional Organelles in Prokaryotes - Polyhedral Inclusions (Carboxysomes) of Thiobacillus Neapolitanus. Science 182: 584586.
  • 4
    Kerfeld CA, Heinhorst S, Cannon GC ( 2010) Bacterial microcompartments. Annu Rev Microbiol 64: 391408.
  • 5
    Yeates TO, Thompson MC, Bobik TA ( 2011) The protein shells of bacterial microcompartment organelles. Curr Opin Struct Biol 21: 223231.
  • 6
    Yeates TO, Tsai Y, Tanaka S, Sawaya MR, Kerfeld CA ( 2007) Self-assembly in the carboxysome: a viral capsid-like protein shell in bacterial cells. Biochem Soc Trans 35: 508511.
  • 7
    Bobik TA ( 2006) Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70: 517525.
  • 8
    Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM ( 2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6: 681691.
  • 9
    Raushel FM, Thoden JB, Holden HM ( 2003) Enzymes with molecular tunnels. Acc Chem Res 36: 539548.
  • 10
    Sampson EM, Bobik TA ( 2008) Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 190: 29662971.
  • 11
    Penrod JT, Roth JR ( 2006) Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J Bacteriol 188: 28652874.
  • 12
    Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM ( 2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67: 53515361.
  • 13
    English RS, Lorbach SC, Qin X, Shively JM ( 1994) Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol 12: 647654.
  • 14
    Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM, Cannon GC ( 2006) Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J Bacteriol 188: 80878094.
  • 15
    Cannon GC, Heinhorst S, Kerfeld CA ( 2010) Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation. Biochim Biophys Acta 1804: 382392.
  • 16
    Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC ( 1999) The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B(12)-dependent 1, 2-propanediol degradation. J Bacteriol 181: 59675975.
  • 17
    Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR ( 1997) Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179: 66336639.
  • 18
    Chen P, Ailion M, Bobik T, Stormo G, Roth J ( 1995) Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J Bacteriol 177: 54015410.
  • 19
    Garsin DA ( 2010) Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8: 290295.
  • 20
    Stojiljkovic I, Baumler AJ, Heffron F ( 1995) Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177: 13571366.
  • 21
    Yeates TO, Crowley CS, Tanaka S ( 2010) Bacterial microcompartment organelles: protein shell structure and evolution. Annu Rev Biophys 39: 185205.
  • 22
    Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA ( 2008) Bacterial microcompartments: their properties and paradoxes. Bioessays 30: 10841095.
  • 23
    Tanaka S, Sawaya MR, Phillips M, Yeates TO ( 2009) Insights from multiple structures of the shell proteins from the beta-carboxysome. Protein Sci 18: 108120.
  • 24
    Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA ( 2009) Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392: 319333.
  • 25
    Crowley CS, Cascio D, Sawaya MR, Kopstein JS, Bobik TA, Yeates TO ( 2010) Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell. J Biol Chem 285: 3783837846.
  • 26
    Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C Engineered protein nano-compartments for targeted enzyme localization. PLoS One 7: e33342.
  • 27
    Fan C, Cheng S, Liu Y, Escobar CM, Crowley CS, Jefferson RE, Yeates TO, Bobik TA ( 2010) Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A 107: 75097514.
  • 28
    Heinhorst S, Cannon GC ( 2010) Addressing microbial organelles: a short peptide directs enzymes to the interior. Proc Natl Acad Sci U S A 107: 76277628.
  • 29
    Parsons JB, Frank S, Bhella D, Liang M, Prentice MB, Mulvihill DP, Warren MJ ( 2010) Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol Cell 38: 305315.
  • 30
    Fan C, Bobik TA ( 2011) The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 193: 56235628.
  • 31
    Kinney JN, Salmeen A, Cai F, Kerfeld CA ( 2012) Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 287: 1772917736.
  • 32
    Cot SS, So AK, Espie GS ( 2008) A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J Bacteriol 190: 936945.
  • 33
    Pena KL, Castel SE, de Araujo C, Espie GS, Kimber MS ( 2010) Structural basis of the oxidative activation of the carboxysomal gamma-carbonic anhydrase, CcmM. Proc Natl Acad Sci U S A 107: 24552460.
  • 34
    Baker SH, Lorbach SC, Rodriguez-Buey M, Williams DS, Aldrich HC, Shively JM ( 1999) The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in thiobacillus neapolitanus. Arch Microbiol 172: 233239.
  • 35
    Roberts EW, Cai F, Kerfeld CA, Cannon GC, Heinhorst S ( 2011) Isolation and characterization of the Prochlorococcus carboxysome reveal the presence of the novel shell protein CsoS1D. J Bacteriol 194: 787795.
  • 36
    Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO ( 2008) Atomic-level models of the bacterial carboxysome shell. Science 319: 10831086.
  • 37
    Sagermann M, Ohtaki A, Nikolakakis K ( 2009) Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc Natl Acad Sci U S A 106: 88838887.
  • 38
    Hayashi NR, Arai H, Kodama T, Igarashi Y ( 1997) The novel genes, cbbQ and cbbO, located downstream from the RubisCO genes of Pseudomonas hydrogenothermophila, affect the conformational states and activity of RubisCO. Biochem Biophys Res Commun 241: 565569.
  • 39
    Galperin MY, Grishin NV ( 2000) The synthetase domains of cobalamin biosynthesis amidotransferases cobB and cobQ belong to a new family of ATP-dependent amidoligases, related to dethiobiotin synthetase. Proteins 41: 238247.
  • 40
    Fresquet V, Williams L, Raushel FM ( 2004) Mechanism of cobyrinic acid a,c-diamide synthetase from Salmonella typhimurium LT2. Biochemistry 43: 1061910627.
  • 41
    Floquet N, Mouilleron S, Daher R, Maigret B, Badet B, Badet-Denisot MA ( 2007) Ammonia channeling in bacterial glucosamine-6-phosphate synthase (Glms): molecular dynamics simulations and kinetic studies of protein mutants. FEBS Lett 581: 29812987.
  • 42
    Holden HM, Thoden JB, Raushel FM ( 1999) Carbamoyl phosphate synthetase: an amazing biochemical odyssey from substrate to product. Cell Mol Life Sci 56: 507522.
  • 43
    Naponelli V, Noiriel A, Ziemak MJ, Beverley SM, Lye LF, Plume AM, Botella JR, Loizeau K, Ravanel S, Rebeille F, de Crecy-Lagard V, Hanson AD ( 2008) Phylogenomic and functional analysis of pterin-4a-carbinolamine dehydratase family (COG2154) proteins in plants and microorganisms. Plant Physiol 146: 15151527.
  • 44
    Hauer CR, Rebrin I, Thony B, Neuheiser F, Curtius HC, Hunziker P, Blau N, Ghisla S, Heizmann CW ( 1993) Phenylalanine hydroxylase-stimulating protein/pterin-4 alpha-carbinolamine dehydratase from rat and human liver. Purification, characterization, and complete amino acid sequence. J Biol Chem 268: 48284831.
  • 45
    Fitzpatrick PF ( 2000) The aromatic amino acid hydroxylases. Adv Enzymol Relat Areas Mol Biol 74: 235294.
  • 46
    Fitzpatrick PF ( 2003) Mechanism of aromatic amino acid hydroxylation. Biochemistry 42: 1408314091.
  • 47
    Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N ( 2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15: 939947.
  • 48
    Dobrinski KP, Enkemann SA, Yoder SJ, Haller E, Scott KM ( 2012) Transcriptional response of the sulfur chemolithoautotroph Thiomicrospira crunogena to dissolved inorganic carbon limitation. J Bacteriol 194: 20742081.
  • 49
    Ailion M, Roth JR ( 1997) Repression of the cob operon of Salmonella typhimurium by adenosylcobalamin is influenced by mutations in the pdu operon. J Bacteriol 179: 60846091.
  • 50
    Fan C, Bobik TA ( 2008) The PduX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B12 synthesis. J Biol Chem 283: 1132211329.
  • 51
    Del Papa MF, Perego M ( 2008) Ethanolamine activates a sensor histidine kinase regulating its utilization in Enterococcus faecalis. J Bacteriol 190: 71477156.
  • 52
    Roof DM, Roth JR ( 1992) Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium. J Bacteriol 174: 66346643.
  • 53
    Heldt D, Frank S, Seyedarabi A, Ladikis D, Parsons JB, Warren MJ, Pickersgill RW ( 2009) Structure of a trimeric bacterial microcompartment shell protein, EtuB, associated with ethanol utilization in Clostridium kluyveri. Biochem J 423: 199207.
  • 54
    Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittmatter A, Miethke M, Buckel W, Hinderberger J, Li F, Hagemeier C, Thauer RK, Gottschalk G ( 2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 105: 21282133.
  • 55
    Wackett LP, Frias JA, Seffernick JL, Sukovich DJ, Cameron SM ( 2007) Genomic and biochemical studies demonstrating the absence of an alkane-producing phenotype in Vibrio furnissii M1. Appl Environ Microbiol 73: 71927198.
  • 56
    Reizer J, Reizer A, Saier MH, Jr. ( 1993) The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28: 235257.
  • 57
    Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R ( 2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69: 326356.
  • 58
    Vindal V, Suma K, Ranjan A ( 2007) GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. BMC Genomics 8: 289.
  • 59
    Urano N, Kataoka M, Ishige T, Kita S, Sakamoto K, Shimizu S ( 2010) Genetic analysis around aminoalcohol dehydrogenase gene of Rhodococcus erythropolis MAK154: a putative GntR transcription factor in transcriptional regulation. Appl Microbiol Biotechnol 89: 739746.
  • 60
    Frey PA, Hegeman AD, Reed GH ( 2006) Free radical mechanisms in enzymology. Chem Rev 106: 33023316.
  • 61
    Selmer T, Pierik AJ, Heider J ( 2005) New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol Chem 386: 981988.
  • 62
    Buckel W, Golding BT ( 2006) Radical enzymes in anaerobes. Annu Rev Microbiol 60: 2749.
  • 63
    Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J ( 1992) The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A 89: 9961000.
  • 64
    Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL ( 2008) Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc Natl Acad Sci U S A 105: 1613716141.
  • 65
    Lehtio L, Goldman A ( 2004) The pyruvate formate lyase family: sequences, structures and activation. Protein Eng Des Sel 17: 545552.
  • 66
    Vey JL, Drennan CL Structural insights into radical generation by the radical SAM superfamily. Chem Rev 111: 24872506.
  • 67
    Bouvet OM, Lenormand P, Ageron E, Grimont PA ( 1995) Taxonomic diversity of anaerobic glycerol dissimilation in the Enterobacteriaceae. Res Microbiol 146: 279290.
  • 68
    O'Brien JR, Raynaud C, Croux C, Girbal L, Soucaille P, Lanzilotta WN ( 2004) Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry 43: 46354645.
  • 69
    Scott KP, Martin JC, Campbell G, Mayer CD, Flint HJ ( 2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 188: 43404349.
  • 70
    Liu Y, Leal NA, Sampson EM, Johnson CL, Havemann GD, Bobik TA ( 2007) PduL is an evolutionarily distinct phosphotransacylase involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar typhimurium LT2. J Bacteriol 189: 15891596.
  • 71
    Mao X, Cai T, Olyarchuk JG, Wei L ( 2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 37873793.
  • 72
    Dosztanyi Z, Csizmok V, Tompa P, Simon I ( 2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 34333434.
  • 73
    Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO ( 2005) Protein structures forming the shell of primitive bacterial organelles. Science 309: 936938.
  • 74
    Pang A, Warren MJ, Pickersgill RW ( 2011) Structure of PduT, a trimeric bacterial microcompartment protein with a 4Fe-4S cluster-binding site. Acta Crystallogr D Biol Crystallogr 67: 9196.
  • 75
    Parsons JB, Dinesh SD, Deery E, Leech HK, Brindley AA, Heldt D, Frank S, Smales CM, Lunsdorf H, Rambach A, Gass MH, Bleloch A, McClean KJ, Munro AW, Rigby SE, Warren MJ, Prentice MB ( 2008) Biochemical and structural insights into bacterial organelle form and biogenesis. J Biol Chem 283: 1436614375.
  • 76
    Kofoid E, Rappleye C, Stojiljkovic I, Roth J ( 1999) The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 181: 53175329.
  • 77
    Cannon GC, Baker SH, Soyer F, Johnson DR, Bradburne CE, Mehlman JL, Davies PS, Jiang QL, Heinhorst S, Shively JM ( 2003) Organization of carboxysome genes in the thiobacilli. Curr Microbiol 46: 115119.
  • 78
    Badger MR, Price GD ( 2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609622.
  • 79
    Lawrence JG, Roth JR ( 1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143: 18431860.
  • 80
    Brinsmade SR, Paldon T, Escalante-Semerena JC ( 2005) Minimal functions and physiological conditions required for growth of salmonella enterica on ethanolamine in the absence of the metabolosome. J Bacteriol 187: 80398046.
  • 81
    Bay DC, Rommens KL, Turner RJ ( 2008) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778: 18141838.
  • 82
    Chen P, Andersson DI, Roth JR ( 1994) The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol 176: 54745482.
  • 83
    Kim C, Mobashery S ( 2005) Phosphoryl transfer by aminoglycoside 3′-phosphotransferases and manifestation of antibiotic resistance. Bioorg Chem 33: 149158.
  • 84
    Aoki R, Nagaya A, Arakawa S, Kato C, Tamegai H ( 2008) Identification and diversity of putative aminoglycoside-biosynthetic aminotransferase genes from deep-sea environmental DNA. Biosci Biotechnol Biochem 72: 13881393.
  • 85
    Nagaya A, Takeyama S, Tamegai H ( 2005) Identification of aminotransferase genes for biosynthesis of aminoglycoside antibiotics from soil DNA. Biosci Biotechnol Biochem 69: 13881393.
  • 86
    Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE ( 2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186: 50175030.
  • 87
    Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N ( 1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96: 28962901.
  • 88
    Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D ( 1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 8386.
  • 89
    Kyrpides NC, Ouzounis CA, Iliopoulos I, Vonstein V, Overbeek R ( 2000) Analysis of the Thermotoga maritima genome combining a variety of sequence similarity and genome context tools. Nucleic Acids Res 28: 45734576.
  • 90
    Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D ( 2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5: R35.
  • 91
    Snel B, Lehmann G, Bork P, Huynen MA ( 2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28: 34423444.
  • 92
    Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C ( 2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37: 211215.
  • 93
    Mulder NJ, Kersey P, Pruess M, Apweiler R ( 2008) In silico characterization of proteins: UniProt, InterPro and Integr8. Mol Biotechnol 38: 165177.
  • 94
    Eddy SR ( 1998) Profile hidden Markov models. Bioinformatics 14: 755763.
  • 95
    Finn RD, Clements J, Eddy SR ( 2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39: 2937.
  • 96
    Crowley CS, Sawaya MR, Bobik TA, Yeates TO ( 2008) Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Structure 16: 13241332.