• 1
    Fankhauser RL, Noel JS, Monroe SS, Ando T, Glass RI ( 1998) Molecular epidemiology of “Norwalk-like viruses” in outbreaks of gastroenteritis in the United States. J Infect Dis 178: 15711578.
  • 2
    Glass RI, Parashar UD, Estes MK ( 2009) Norovirus gastroenteritis. N Engl J Med 361: 17761785.
  • 3
    Hardy ME ( 2005) Norovirus protein structure and function. FEMS Micobiol Lett 253: 18.
  • 4
    Belliot G, Sosnovtsev SV, Mitra T, Hammer C, Garfield M, Green KY ( 2003) In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural protein yields stable precursors and products similar to those detected in calicivirus-infected cells. J Virol 77: 1095710974.
  • 5
    Blakeney SJ, Cahill A, Reilly PA ( 2003) Processing of Norwalk virus nonstructural proteins by a 3C-like cysteine proteinase. Virology 308: 216224.
  • 6
    Sosnovtsev SV, Belliot G, Chang KO, Prikhodko PG, Thackray LB, Wobus CE, Karst SM, Virgin SW, Green KY ( 2006) Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80: 78167831.
  • 7
    Sosnovtsev SV, Proteolytic cleavage and viral proteins. In: Hansman GS, Jiang XJ, Green KY, Eds. ( 2010) Caliciviruses: molecular and cellular virology. Norfolk: Caister Academic Press, pp 6594.
  • 8
    Kuyumcu-Martinez M, Belliot G, Sosnovtsev SV, Chang KO, Green KY, Lloyd RE ( 2004) Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J Virol 78: 81728182.
  • 9
    Bazan JF, Fletterick RJ ( 1988) Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85: 78727876.
  • 10
    Zeitler CE, Estes MK, Prasad BVV ( 2005) X-ray crystallographic structure of the Norwalk virus protease at 1.5-Å resolution. J Virol 80: 50505058.
  • 11
    Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO ( 2012) Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses and coronaviruses. J Virol PMID: 22915796.
  • 12
    Nakamura K, Someya Y, Kumasaka T, Ueno G, Yamamoto M, Sato T, Takeda N, Miyamura T, Tanaka N ( 2005) A norovirus protease structure provides insights into active and substrate binding site integrity. J Virol 79: 1368513693.
  • 13
    Hussey RJ, Coates L, Gill RS, Erskine PT, Coker SF, Mitchell E, Cooper JB, Wood S, Broadbridge R, Clarke IN, Lambden PR, Shoolingin-Jordan PM ( 2011) A structural study of norovirus 3C protease specificity: binding of a designed active site-directed peptide inhibitor. Biochemistry 50: 240249.
  • 14
    Someya Y, Takeda N, Miyamura T ( 2002) Identification of active-site amino acid residues in the Chiba virus 3C-like protease. J Virol 76: 70607072.
  • 15
    Someya Y, Takeda N ( 2011) Functional consequences of mutational analysis of norovirus protease. FEBS Lett 585: 369374.
  • 16
    Someya Y, Takeda N ( 2009) Insights into the enzyme-substrate interaction in the norovirus 3C-like protease. J Biochem 146: 509521.
  • 17
    Takahashi D, Kim Y, Chang KO, Anbanandam A, Prakash O ( 2012) Backbone and side-chain 1H, 15N, and 13C resonance assignments of Norwalk virus protease. Biomol NMR Assign 6: 1921.
  • 18
    Sikic K, Tomic S, Carugo O ( 2010) Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Open Biochem J 4: 8395.
  • 19
    Kay LE, Torchia DA, Bax A ( 1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28: 89728979.
  • 20
    Jarymowycz VA, Stone MJ ( 2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106: 16241671.
  • 21
    Lipari G, Szabo A ( 1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104: 45464559.
  • 22
    Lipari G, Szabo A ( 1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104: 45594570.
  • 23
    Mandel AM, Akke M, Palmer AG ( 1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlation with structure and function in an active enzyme. J Mol Biol 246: 144163.
  • 24
    Clore GM, Driscoll PC, Wingfield PT, Gronenborn AM ( 1990) Analysis of backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29: 73877401.
  • 25
    Epstein DM, Benkovic SJ, Wright PE ( 1995) Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features. Biochemistry 34: 1103711048.
  • 26
    Chang KO, Takahashi D, Prakash O, Kim Y ( 2012) Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay. Virology 423: 125133.
  • 27
    Henzler-Wildman K, Kern D ( 2007) Dynamic personalities of proteins. Nature 450: 964972.
  • 28
    Lange OF, Lakomek NA, Farès C, Schröder GF, Walter KFA, Becker S, Meiler J, Grubmüller H, Griesinger C, de Groot BL ( 2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320: 14711475.
  • 29
    Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE ( 2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332: 234238.
  • 30
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A ( 1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6: 277293.
  • 31
    Keller R. ( 2004) Computer Aided Resonance Assignment. Accessed Jan 2013.
  • 32
    Goddard TD, Kneller DG
  • 33
    Shen Y, Delaglio F, Cornilescu G, Bax A ( 2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44: 213223.
  • 34
    Brunger AT, Adams PD, Clore GM, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges N, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL ( 1998) Crystallography & NMR System (CNS), a new software suite for macromolecular structure determination. Acta Cryst D 54: 905921.
  • 35
    Brunger AT ( 2007) Version 1.2 of the Crystallography and NMR System. Nat Protoc 2: 27282733.
  • 36
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton J M ( 1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8: 477486.
  • 37
    Koradi R, Billeter M, Wüthrich K ( 1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14: 5157.
  • 38
    Kay LE, Torchia DA, Bax A ( 1989) Backbone dynamics of proteins as studied by 15N-inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28: 89728979.
  • 39
    Barbato G, Ikura M, Kay LE, Pator RW, Bax A ( 1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31: 52695278.
  • 40
    Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE ( 1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33: 59846003.
  • 41
    Dosset P, Hus JC, Blackledge M, Marion D ( 2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16: 2328.
  • 42
    Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ ( 2006) Protein NMR spectroscopy, principles and practice, 2nd ed. Waltham, MA: Elsevier.
  • 43
    Loria JP, Rance M, Palmer AG III ( 1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121: 23312332.
  • 44
    Tollinger M, Skrynnikov NR, Mulder FAA, Forman-Kay JD, Kay LE ( 2001) Slow dynamics of folded and unfolded states of an SH3 domain. J Am Chem Soc 123: 1134111352.