SEARCH

SEARCH BY CITATION

References

  • 1
    Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH ( 1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 250: 651657.
  • 2
    Hirata R, Ohsumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y ( 1990) Molecular-structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine-triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265: 67266733.
  • 3
    Perler FB ( 1998) Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92: 14.
  • 4
    Paulus H ( 2000) Protein splicing and related forms of protein autoprocessing. Ann Rev Biochem 69: 447496.
  • 5
    Lewis CA, Jr, Wolfenden R ( 2011) Amide bonds to the nitrogen atoms of cysteine and serine as “weak points” in the backbones of proteins. Biochemistry 50: 72597264.
  • 6
    Callahan BP, Topilina NI, Stanger MJ, Van Roey P, Belfort M ( 2011) Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat Struct Mol Biol 18: 630633.
  • 7
    Xu Q, Buckley D, Guan C, Guo HC ( 1999) Structural insights into the mechanism of intramolecular proteolysis. Cell 98: 651661.
  • 8
    Poland B, Xu MQ, Quiocho FA ( 2000) Structural insights into the protein splicing mechanism of Pl-Scel. J Biol Chem 275: 1640816413.
  • 9
    Romanelli A, Shekhtman A, Cowburn D, Muir TW ( 2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci USA 101: 63976402.
  • 10
    Johansson DG A, Wallin G, Sandberg A, Macao B, Åqvist J, Härd T ( 2009) Protein autoproteolysis: conformational strain linked to the rate of peptide cleavage by the pH dependence of the N->O acyl shift reaction. J Am Chem Soc 131: 94759477.
  • 11
    Klabunde T, Sharma S, Telenti A, Jacobs WR, Jr, Sacchettini JC ( 1998) Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5: 3136.
  • 12
    Chen VB, Arendall BIII, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC ( 2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 1221.
  • 13
    Du Z, Shemella PT, Liu Y, McCallum SA, Pereira B, Nayak SK, Belfort G, Belfort M, Wang C ( 2009) Highly conserved histidine plays a dual catalytic role in protein splicing: a pK(a) shift mechanism. J Am Chem Soc 131: 1158111589.
  • 14
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ ( 2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83: 16371641.
  • 15
    Perler FB ( 2002) InBase: the intein database. Nucleic Acids Res 30: 383384.
  • 16
    Bessette PH, Aslund F, Beckwith J, Georgiou G ( 1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96: 1370313708.
  • 17
    Cheriyan M, Perler FB ( 2009) Protein splicing: a versatile tool for drug discovery. Adv Drug Del Rev 61: 899907.
  • 18
    Vila-Perello M, Muir TW ( 2010) Biological applications of protein splicing. Cell 143: 191200.
  • 19
    Callahan BP, Stanger M, Belfort M (in press) A redox trap to augment the intein toolbox. Biotechnol Bioeng. doi: 10.1002/bit.24821.
  • 20
    Becke AD ( 1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 56485642.
  • 21
    Maseras F, Morokuma K ( 1995) IMOMM—a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J Comput Chem 16: 11701179.
  • 22
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA ( 1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117: 51795197.
  • 23
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr.JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J. E, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA. ( 2004) Gaussian 03 Rev. C.02., Wallingford, CT; Gaussian.
  • 24
    Peng C, Schlegel HB ( 1993) Combining synchronous transit and quasi-Newton methods to find transition-states. Isr J Chem 33: 449454.
  • 25
    Peng C, Ayala PY, Schlegel HB, Frisch MJ ( 1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17: 4956.
  • 26
    Miertus S, Scrocco E, Tomasi J ( 1981) Electrostatic interaction of a solute with a continuum—a direct utilization of ab initio molecular potentials for the prevision of solvent effects. J Chem Phys 55: 117129.
  • 27
    Schutz CN, Warshel A ( 2001) What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44: 400417.
  • 28
    Jordanides XJ, Lang MJ, Song X, Fleming GR ( 1999) Solvation dynamics in protein environments studied by photon echo spectroscopy. J Phys Chem B 103: 79958005.
  • 29
    Blomberg MRA, Siegbahn PEM ( 2006) Different types of biological proton transfer reactions studied by quantum chemical methods. Biochim Biophys Acta 1757: 969980.
  • 30
    Anraku Y, Satow Y ( 2009) Reflections on protein splicing: structures, functions, and mechanisms. Proc Jpn Acad Ser B 85: 409421.
  • 31
    Paulus H ( 1998) The chemical basis of protein splicing. Chem Rev 27: 375386.
  • 32
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL ( 1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905921.
  • 33
    Emsley P, Cowtan K ( 2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 21262132.
  • 34
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, III, Snoeyink J, Richardson JS, Richardson DC ( 2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35: W375W383.