• 1
    Kay BK, Yamabhai M, Wendland B, Emr SD (1999) Identification of a novel domain shared by putative components of the endocytic and cytoskeletal machinery. Protein Sci 8:435438.
  • 2
    De Camilli P, Chen H, Hyman J, Panepucci E, Bateman A, Brunger AT (2002) The ENTH domain. FEBS Lett 513:1118.
  • 3
    Sen A, Madhivanan K, Mukherjee D, Aguilar RC (2012) The epsin protein family: coordinators of endocytosis and signaling. Biomol Concepts 3:117126.
  • 4
    Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, DiFiore PP, De Camilli P (1998) Epsin is an EH-domain–binding protein implicated in clathrin mediated endocytosis. Nature 394:793797.
  • 5
    Itoh T, Koshiba S, Kigawa T, Yokoyama S, Takenawa T (2001) Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291:10471051.
  • 6
    Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJK, Evans PR, McMahon HT (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419:361366.
  • 7
    Stahelin RV, Long F, Peter BJ, Murray D, De Camilli P, McMahon HT, Cho W (2003) Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and Epsin N-terminal homology (ENTH) domains. J Biol Chem 278:2899328999.
  • 8
    Kweon DH, Shin YK, Shin JY, Lee JH, Lee JB, Seo JH, Kim YS (2006) Membrane topology of helix 0 of the epsin N-terminal homology domain. Mol Cell 21:428435.
  • 9
    Capraro BR, Yoon Y, Cho W, Baumgart T (2010) Curvature sensing by the epsin N-terminal homology domain measured on cylindrical lipid membrane tethers. J Am Chem Soc 132:12001201.
  • 10
    Wendland B, Steece KE, Emr SD (1999) Yeast epsins contain an essential N-terminal ENTH domain, bind clathrin and are required for endocytosis. EMBO 18:43834393.
  • 11
    Mukherjee D, Coon BG, Edwards DF, Hanna CB, Longhi SA, McCaffery JM, Wendland B, Retegui LA, Bi E, Aguilar CR (2009) The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway. Cell Sci 122:24532463.
  • 12
    Aguilar RC, Longhi SA, Shaw JD, Yeh LY, Kim S, Schön A, Freire E, Hsu A, McCormick WK, Watson HA (2006) Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci USA 103:41164121.
  • 13
    Hyman J, Chen H, DiFiore PP, DeCamilli P, Brunger AT (2000) Epsin 1 undergoes nucleocytosolic shuttling and its eps15 interactor NH(2)-terminal homology (ENTH) domain, structurally similar to Armadillo and HEAT repeats, interacts with the transcription factor promyelocytic leukemia Zn(2)+ finger protein (PLZF). J Cell Biol 149:537546.
  • 14
    Koshiba S, Kigawa T, Kikuchi A, Yokoyama S (2002) Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin. J Struct Funct Genom 2:18.
  • 15
    Aguilar RC, Wendland B (2005) Endocytosis of membrane receptors: two pathways are better than one. Proc Natl Acad Sci USA 102:26792680.
  • 16
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW, Jr., Sweet RM, Eds. Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A. New York: Academic Press, pp 307326.
  • 17
    Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D50:760776.
  • 18
    Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491497.
  • 19
    Long F, Vagin A, Young P, Murshudov GN (2008) BALBES: a molecular replacement pipeline. Acta Cryst D 64:125132.
  • 20
    Emsley P, Cowtan K (2004). Coot: model-building tools for molecular graphics. Acta Cryst D60:21262132.
  • 21
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D53:240255.
  • 22
    Mukherjee D, Sen A, Aguilar RC (2010) Analysis of the development of a morphological phenotype as a function of protein concentration in budding yeast. J Vis Exp 37: Available at:, doi: 10.3791/1863.