SEARCH

SEARCH BY CITATION

References

  • 1
    Trivier D, Courcol RJ (1996) Iron depletion and virulence in Staphylococcus aureus. FEMS Microbiol Lett 141:117127.
  • 2
    Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949.
  • 3
    Lowy FD (2011) How Staphylococcus aureus adapts to its host. N Engl J Med 364:19871990.
  • 4
    Haley KP, Skaar EP (2012) A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes Infect 14:217227.
  • 5
    Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299:906909.
  • 6
    Tiedemann MT, Muryoi N, Heinrichs DE, Stillman MJ (2008) Iron acquisition by the haem-binding Isd proteins in Staphylococcus aureus: studies of the mechanism using magnetic circular dichroism. Biochem Soc Trans 36:11381143.
  • 7
    Zhu H, Xie G, Liu M, Olson JS, Fabian M, Dooley DM, Lei B (2008) Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus. J Biol Chem 283:1845018460.
  • 8
    Grigg JC, Ukpabi G, Gaudin CF, Murphy ME (2010) Structural biology of heme binding in the Staphylococcus aureus Isd system. J Inorg Biochem 104:341348.
  • 9
    Spirig T, Malmirchegini GR, Zhang J, Robson SA, Sjodt M, Liu M, Krishna Kumar K, Dickson CF, Gell DA, Lei B, Loo JA, Clubb RT (2013) Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J Biol Chem 288:10651078.
  • 10
    Grigg JC, Vermeiren CL, Heinrichs DE, Murphy ME (2007) Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 63:139149.
  • 11
    Sharp KH, Schneider S, Cockayne A, Paoli M (2007) Crystal structure of the heme-IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus. J Biol Chem 282:1062510631.
  • 12
    Watanabe M, Tanaka Y, Suenaga A, Kuroda M, Yao M, Watanabe N, Arisaka F, Ohta T, Tanaka I, Tsumoto K (2008) Structural basis for multimeric heme complexation through a specific protein-heme interaction: the case of the third neat domain of IsdH from Staphylococcus aureus. J Biol Chem 283:2864928659.
  • 13
    Liu M, Tanaka WN, Zhu H, Xie G, Dooley DM, Lei B (2008) Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. J Biol Chem 283:66686676.
  • 14
    Muryoi N, Tiedemann MT, Pluym M, Cheung J, Heinrichs DE, Stillman MJ (2008) Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus. J Biol Chem 283:2812528136.
  • 15
    Villareal VA, Spirig T, Robson SA, Liu M, Lei B, Clubb RT (2011) Transient weak protein-protein complexes transfer heme across the cell wall of Staphylococcus aureus. J Am Chem Soc 133:1417614179.
  • 16
    Abe R, Caaveiro JM, Kozuka-Hata H, Oyama M, Tsumoto K (2012) Mapping ultra-weak protein-protein interactions between heme transporters of Staphylococcus aureus. J Biol Chem 287:1647716487.
  • 17
    Honsa ES, Fabian M, Cardenas AM, Olson JS, Maresso AW (2011) The five near-iron transporter (NEAT) domain anthrax hemophore, IsdX2, scavenges heme from hemoglobin and transfers heme to the surface protein IsdC. J Biol Chem 286:3365233660.
  • 18
    Ekworomadu MT, Poor CB, Owens CP, Balderas MA, Fabian M, Olson JS, Murphy F, Balkabasi E, Honsa ES, He C, Goulding CW, Maresso AW (2012) Differential function of lip residues in the mechanism and biology of an anthrax hemophore. PLoS Pathog 8:e1002559.
  • 19
    Villareal VA, Pilpa RM, Robson SA, Fadeev EA, Clubb RT (2008) The IsdC protein from Staphylococcus aureus uses a flexible binding pocket to capture heme. J Biol Chem 283:3159131600.
  • 20
    Grigg JC, Mao CX, Murphy ME (2011) Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer. J Mol Biol 413:684698.
  • 21
    Moriwaki Y, Caaveiro JM, Tanaka Y, Tsutsumi H, Hamachi I, Tsumoto K (2011) Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of Staphylococcus aureus. Biochemistry 50:73117320.
  • 22
    Tiedemann MT, Pinter TB, Stillman MJ (2012) Insight into blocking heme transfer by exploiting molecular interactions in the core Isd heme transporters IsdA-NEAT, IsdC-NEAT, and IsdE of Staphylococcus aureus. Metallomics 4:751760.
  • 23
    Stojiljkovic I, Kumar V, Srinivasan N (1999) Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31:429442.
  • 24
    Yukitake H, Naito M, Sato K, Shoji M, Ohara N, Yoshimura M, Sakai E, Nakayama K (2011) Effects of non-iron metalloporphyrins on growth and gene expression of Porphyromonas gingivalis. Microbiol Immunol 55:141153.
  • 25
    Drummond GS, Kappas A (1981) Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc Natl Acad Sci USA 78:64666470.
  • 26
    Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79127.
  • 27
    Lelyveld VS, Brustad E, Arnold FH, Jasanoff A (2011) Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity. J Am Chem Soc 133:649651.
  • 28
    Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751767.
  • 29
    Cruickshank DW (1999) Remarks about protein structure precision. Acta Cryst D55:583601.
  • 30
    Ladbury JE, Doyle ML (2004) Biocalorimetry 2. Applications of calorimetry in the biological sciences. West Sussex: John Wiley & Sons.
  • 31
    Kuzelova K, Mrhalova M, Hrkal Z (1997) Kinetics of heme interaction with heme-binding proteins: the effect of heme aggregation state. Biochim Biophys Acta 1336:497501.
  • 32
    de Villiers KA, Kaschula CH, Egan TJ, Marques HM (2007) Speciation and structure of ferriprotoporphyrin IX in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not mu-oxo dimer formation. J Biol Inorg Chem 12:101117.
  • 33
    Whitesides GM, Krishnamurthy VM (2005) Designing ligands to bind proteins. Q Rev Biophys 38:385395.
  • 34
    Reynolds CH, Holloway MK (2011) Thermodynamics of ligand binding and efficiency. ACS Med Chem Lett 2:433437.
  • 35
    Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:1485914866.
  • 36
    Wolff N, Deniau C, Letoffe S, Simenel C, Kumar V, Stojiljkovic I, Wandersman C, Delepierre M, Lecroisey A (2002) Histidine pK(a) shifts and changes of tautomeric states induced by the binding of gallium-protoporphyrin IX in the hemophore HasA(SM). Protein Sci 11:757765.
  • 37
    Brugna M, Tasse L, Hederstedt L (2010) In vivo production of catalase containing haem analogues. FEBS J 277:26632672.
  • 38
    Marshall AG, Lee KM, Martin PW (1983) Motional freedom of the central metal atom in apohemoglobin reconstituted with in-111-protoporphyrin. 9. Time-differential perturbed gamma-ray angular-correlations. Abstr Pap Am Chem S 185:213INOR.
  • 39
    Pluym M, Muryoi N, Heinrichs DE, Stillman MJ (2008) Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus. J Inorg Biochem 102:480488.
  • 40
    Gaudin CF, Grigg JC, Arrieta AL, Murphy ME (2011) Unique heme-iron coordination by the hemoglobin receptor IsdB of Staphylococcus aureus. Biochemistry 50:54435452.
  • 41
    Aranda RT, Worley CE, Liu M, Bitto E, Cates MS, Olson JS, Lei B, Phillips GN, Jr. (2007) Bis-methionyl coordination in the crystal structure of the heme-binding domain of the streptococcal cell surface protein Shp. J Mol Biol 374:374383.
  • 42
    Mattle D, Zeltina A, Woo JS, Goetz BA, Locher KP (2010) Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J Mol Biol 404:220231.
  • 43
    Chim N, Iniguez A, Nguyen TQ, Goulding CW (2010) Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J Mol Biol 395:595608.
  • 44
    Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment beta-haematin. Nature 404:307310.
  • 45
    Gildenhuys J, Roex T, Egan TJ, de Villiers KA (2013) The single crystal X-ray structure of beta-hematin DMSO solvate grown in the presence of chloroquine, a beta-hematin growth-rate inhibitor. J Am Chem Soc 135:10371047.
  • 46
    Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E (2008) The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:1676116766.
  • 47
    Nakae Y, Fukusaki EI, Kajiyama S, Kobayashi A, Nakajima S, Sakata I (2005) The convenient screening method using albumin for the tumor localizing property of Ga-porphyrin complexes. J Photochem Photobiol A 172:5561.
  • 48
    Leslie AG (2006) The integration of macromolecular diffraction data. Acta Cryst D62:4857.
  • 49
    Evans P (2006) Scaling and assessment of data quality. Acta Cryst D62:7282.
  • 50
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40:658674.
  • 51
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D53:240255.
  • 52
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Cryst D66:486501.
  • 53
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J App Cryst 26:283291.
  • 54
    Pinter TB, Dodd EL, Bohle DS, Stillman MJ (2012) Spectroscopic and theoretical studies of Ga(III)protoporphyrin-IX and its reactions with myoglobin. Inorg Chem 51:37433753.
  • 55
    Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:11731213.
  • 56
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Wallingford, CT: Gaussian, Inc.
  • 57
    DeLano WL (2010) The PYMOL molecular graphics system, Version 1.5.0.3. Schrodinger, LCC, New York, US.
  • 58
    Charkin OP, Klimenko NM, Charkin DO, Lin SH (2007) Theoretical study of the structure and stability of the heme dimer (FeC34H32N4O4)(2) and its ion (FeC34H32N4O4)(2)(+). Russ J Inorg Chem 52:10881097.
  • 59
    Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions. J Chem Theory Comput 7:525537.
  • 60
    Grubmueller H (1996) Solvate v. 1.0. Munich: Ludwig-Maximilians University.
  • 61
    Case DA, Darden TA, T.E. Cheatham I, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvai I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. San Francisco, CA: University of California.
  • 62
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:7120725.
  • 63
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926935.
  • 64
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp model. J Phys Chem 97:1026910280.
  • 65
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247260.
  • 66
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23:327341.
  • 67
    Uberuaga BP, Anghel M, Voter AF (2004) Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J Chem Phys 120:63636374.
  • 68
    Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:36843690.
  • 69
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:1008910092.
  • 70
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:85778593.