SEARCH

SEARCH BY CITATION

References

  • 1
    Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Exp Purif 48:113.
  • 2
    Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620634.
  • 3
    Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:13131322.
  • 4
    Ron D, Dressler H (1992) pGSTag-a versatile bacterial expression plasmid for enzymatic labeling of recombinant proteins. Biotechniques 13:866869.
  • 5
    Malhotra A (2009) Tagging for protein expression. Methods Enzymol 463:239258.
  • 6
    Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:3140.
  • 7
    Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316320.
  • 8
    Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179187.
  • 9
    Schrodel A, de Marco A (2005) Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 6:10.
  • 10
    Fang M, Wang W, Wang Y, Ru B (2004) Bacterial expression and purification of biologically active human TFF3. Peptides 25:785792.
  • 11
    Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715722.
  • 12
    Rodal AA, Duncan M, Drubin D (2002) Purification of glutathione S-transferase fusion proteins from yeast. Methods Enzymol 351:168172.
  • 13
    Zhang N, Qiao Z, Liang Z, Mei B, Xu Z, Song R (2012) Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution. PLoS One 7:e43822.
  • 14
    Song CP, Galbraith DW (2006) AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol 60:241257.
  • 15
    Wong A, Albright SN, Wolfner MF (2006) Evidence for structural constraint on ovulin, a rapidly evolving Drosophila melanogaster seminal protein. Proc Natl Acad Sci U S A 103:1864418649.
  • 16
    Bao X, Zhang W, Krencik R, Deng H, Wang Y, Girton J, Johansen J, Johansen KM (2005) The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells. J Cell Sci 118:50795087.
  • 17
    Thomson RB, Wang T, Thomson BR, Tarrats L, Girardi A, Mentone S, Soleimani M, Kocher O, Aronson PS (2005) Role of PDZK1 in membrane expression of renal brush border ion exchangers. Proc Natl Acad Sci U S A 102:1333113336.
  • 18
    Rudert F, Visser E, Gradl G, Grandison P, Shemshedini L, Wang Y, Grierson A, Watson J (1996) pLEF, a novel vector for expression of glutathione S-transferase fusion proteins in mammalian cells. Gene 169:281282.
  • 19
    Harper S, Speicher DW (2011) Purification of proteins fused to glutathione S-transferase. Methods Mol Biol 681:259280.
  • 20
    Deceglie S, Lionetti C, Roberti M, Cantatore P, Loguercio Polosa P (2012) A modified method for the purification of active large enzymes using the glutathione S-transferase expression system. Anal Biochem 421:805807.
  • 21
    Maru Y, Afar DE, Witte ON, Shibuya M (1996) The dimerization property of glutathione S-transferase partially reactivates Bcr-Abl lacking the oligomerization domain. J Biol Chem 271:1535315357.
  • 22
    Vinckier NK, Chworos A, Parsons SM (2011) Improved isolation of proteins tagged with glutathione S-transferase. Protein Expr Purif 75:161164.
  • 23
    Tolia NH, Joshua-Tor L (2006) Strategies for protein coexpression in Escherichia coli. Nat Methods 3:5564.
  • 24
    Hochuli E, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177184.
  • 25
    Hefti MH, Van Vugt-Van der Toorn CJ, Dixon R, Vervoort J (2001) A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Anal Biochem 295:180185.
  • 26
    Huang A, de Jong RN, Folkers GE, Boelens R (2010) NMR characterization of foldedness for the production of E3 RING domains. J Struct Biol 172:120127.
  • 27
    Lamberti A, Sanges C, Chambery A, Migliaccio N, Rosso F, Di Maro A, Papale F, Marra M, Parente A, Caraglia M, Abbruzzese A, Arcari P (2011) Analysis of interaction partners for eukaryotic translation elongation factor 1A M-domain by functional proteomics. Biochimie 93:17381746.
  • 28
    Noberini R, Rubio de la Torre E, Pasquale EB (2012) Profiling Eph receptor expression in cells and tissues: a targeted mass spectrometry approach. Cell Adh Migr 6:102112.
  • 29
    Uhlen M, Forsberg G, Moks T, Hartmanis M, Nilsson B (1992) Fusion proteins in biotechnology. Curr Opin Biotechnol 3:363369.
  • 30
    Derewenda ZS (2004) The use of recombinant methods and molecular engineering in protein crystallization. Methods 34:354363.
  • 31
    Bucher MH, Evdokimov AG, Waugh DS (2002) Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Cryst D58:392397.
  • 32
    Geoghegan KF, Dixon HB, Rosner PJ, Hoth LR, Lanzetti AJ, Borzilleri KA, Marr ES, Pezzullo LH, Martin LB, LeMotte PK, McColl AS, Kamath AV, Stroh JG (1999) Spontaneous alpha-N-6-phosphogluconoylation of a “His tag” in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion proteins. Anal Biochem 267:169184.
  • 33
    Stevens RC (2000) Design of high-throughput methods of protein production for structural biology. Structure 8:R177185.
  • 34
    Edwards AM, Arrowsmith CH, Christendat D, Dharamsi A, Friesen JD, Greenblatt JF, Vedadi M (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Biol 7:970972.
  • 35
    Shih YP, Kung WM, Chen JC, Yeh CH, Wang AH, Wang TF (2002) High-throughput screening of soluble recombinant proteins. Protein Sci 11:17141719.
  • 36
    Hammarstrom M, Hellgren N, van Den Berg S, Berglund H, Hard T (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313321.
  • 37
    Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, LaBaer J (2002) Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci U S A 99:26542659.
  • 38
    di Guan C, Li P, Riggs PD, Inouye H (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67:2130.
  • 39
    Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:3140.
  • 40
    LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11:187193.
  • 41
    Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497:303317.
  • 42
    Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA (2013) Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4.
  • 43
    Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283293.
  • 44
    Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:7586.
  • 45
    Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182189.
  • 46
    Moon AF, Mueller GA, Zhong X, Pedersen LC (2010) A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci 19:901913.
  • 47
    Liu Y, Manna A, Li R, Martin WE, Murphy RC, Cheung AL, Zhang G (2001) Crystal structure of the SarR protein from Staphylococcus aureus. Proc Natl Acad Sci U S A 98:68776882.
  • 48
    Ke A, Wolberger C (2003) Insights into binding cooperativity of MATa1/MATalpha2 from the crystal structure of a MATa1 homeodomain-maltose binding protein chimera. Protein Sci 12:306312.
  • 49
    Kobe B, Center RJ, Kemp BE, Poumbourios P (1999) Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci U S A 96:43194324.
  • 50
    Kuge M, Fujii Y, Shimizu T, Hirose F, Matsukage A, Hakoshima T (1997) Use of a fusion protein to obtain crystals suitable for X-ray analysis: crystallization of a GST-fused protein containing the DNA-binding domain of DNA replication-related element-binding factor, DREF. Protein Sci 6:17831786.
  • 51
    Tang L, Guo B, Javed A, Choi JY, Hiebert S, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Zhou GW (1999) Crystal structure of the nuclear matrix targeting signal of the transcription factor acute myelogenous leukemia-1/polyoma enhancer-binding protein 2alphaB/core binding factor alpha2. J Biol Chem 274:3358033586.
  • 52
    Zhang Z, Devarajan P, Dorfman AL, Morrow JS (1998) Structure of the ankyrin-binding domain of alpha-Na,K-ATPase. J Biol Chem 273:1868118684.
  • 53
    Ware S, Donahue JP, Hawiger J, Anderson WF (1999) Structure of the fibrinogen gamma-chain integrin binding and factor XIIIa cross-linking sites obtained through carrier protein driven crystallization. Protein Sci 8:26632671.
  • 54
    Stoll VS, Manohar AV, Gillon W, MacFarlane EL, Hynes RC, Pai EF (1998) A thioredoxin fusion protein of VanH, a D-lactate dehydrogenase from Enterococcus faecium: cloning, expression, purification, kinetic analysis, and crystallization. Protein Sci 7:11471155.
  • 55
    Corsini L, Hothorn M, Scheffzek K, Sattler M, Stier G (2008) Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Sci 17:20702079.
  • 56
    Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:12661273.
  • 57
    Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:12111217.
  • 58
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:12581265.
  • 59
    Madej T, Addess KJ, Fong JH, Geer LY, Geer RC, Lanczycki CJ, Liu C, Lu S, Marchler-Bauer A, Panchenko AR, Chen J, Thiessen PA, Wang Y, Zhang D, Bryant SH (2012) MMDB: 3D structures and macromolecular interactions. Nucleic Acids Res 40:D461464.
  • 60
    Lim K, Ho JX, Keeling K, Gilliland GL, Ji X, Ruker F, Carter DC (1994) Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. Protein Sci 3:22332244.
  • 61
    Donahue JP, Patel H, Anderson WF, Hawiger J (1994) Three-dimensional structure of the platelet integrin recognition segment of the fibrinogen gamma chain obtained by carrier protein-driven crystallization. Proc Natl Acad Sci U S A 91:1217812182.
  • 62
    Zhan Y, Song X, Zhou GW (2001) Structural analysis of regulatory protein domains using GST-fusion proteins. Gene 281:19.
  • 63
    Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 5:9971015.
  • 64
    Spurlino JC, Lu GY, Quiocho FA (1991) The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem 266:52025219.
  • 65
    Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:1065710663.
  • 66
    McTigue MA, Williams DR, Tainer JA (1995) Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol 246:2127.
  • 67
    Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol 212:167184.
  • 68
    Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ (1994) High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure 2:853868.
  • 69
    Sheng W, Liao X (2002) Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions. Protein Sci 11:14821491.
  • 70
    Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5:865876.
  • 71
    Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:16681674.
  • 72
    Parker MW, Lo Bello M, Federici G (1990) Crystallization of glutathione S-transferase from human placenta. J Mol Biol 213:221222.
  • 73
    Ji X, Zhang P, Armstrong RN, Gilliland GL (1992) The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry 31:1016910184.
  • 74
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411421.
  • 75
    Routzahn KM, Waugh DS (2002) Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J Struct Funct Genomics 2:8392.
  • 76
    Assenberg R, Delmas O, Graham SC, Verma A, Berrow N, Stuart DI, Owens RJ, Bourhy H, Grimes JM (2008) Expression, purification and crystallization of a lyssavirus matrix (M) protein. Acta Cryst F64:258262.
  • 77
    Liu X, Chen Y, Wu X, Li H, Jiang C, Tian H, Tang L, Wang D, Yu T, Li X (2012) SUMO fusion system facilitates soluble expression and high production of bioactive human fibroblast growth factor 23 (FGF23). Appl Microbiol Biotechnol 96:103111.
  • 78
    Peroutka RJ, Elshourbagy N, Piech T, Butt TR (2008) Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. Protein Sci 17:15861595.
  • 79
    Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:19.
  • 80
    Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6:103111.
  • 81
    Zuo X, Mattern MR, Tan R, Li S, Hall J, Sterner DE, Shoo J, Tran H, Lim P, Serafianos S, Kazi L, Navas-Martin, Weiss SR, Butt TR (2005) Expression and purification of SARS coronavirus proteins using SUMO fusions. Protein Expr Purif 42:100110.
  • 82
    Liu L, Spurrier J, Butt TR, Strickler JE (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr Purif 62:2128.
  • 83
    Vazquez E, Corchero JL, Villaverde A (2011) Post-production protein stability: trouble beyond the cell factory. Microb Cell Fact 10:60.
  • 84
    Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249264.
  • 85
    Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H (2013) Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 8:e54933.
  • 86
    Kim TW, Chung BH, Chang YK (2005) Production of soluble human interleukin-6 in cytoplasm by fed-batch culture of recombinant E. coli. Biotechnol Prog 21:524531.
  • 87
    Tomczak A, Sontheimer J, Drechsel D, Hausdorf R, Gentzel M, Shevchenko A, Eichler S, Fahmy K, Buchholz F, Pisabarro MT (2012) 3D profile-based approach to proteome-wide discovery of novel human chemokines. PLoS One 7:e36151.
  • 88
    Kirkpatrick RB, Grooms M, Wang F, Fenderson H, Feild J, Pratta MA, Volker C, Scott G, Johanson K (2006) Bacterial production of biologically active canine interleukin-1beta by seamless SUMO tagging and removal. Protein Expr Purif 50:102110.
  • 89
    Cui X, Han Y, Pan Y, Xu X, Ren W, Zhang S (2011) Molecular cloning, expression and functional analysis of interleukin-8 (IL-8) in South African clawed frog (Xenopus laevis). Dev Comp Immunol 35:11591165.
  • 90
    Zhu F, Wang Q, Pu H, Gu S, Luo L, Yin Z (2013) Optimization of soluble human interferon-gamma production in Escherichia coli using SUMO fusion partner. World J Microbiol Biotechnol 29:319325.
  • 91
    Hoffmann A, Muller MQ, Gloser M, Sinz A, Rudolph R, Pfeifer S (2010) Recombinant production of bioactive human TNF-alpha by SUMO-fusion system-high yields from shake-flask culture. Protein Expr Purif 72:238243.
  • 92
    Nibbs RJ, Salcedo TW, Campbell JD, Yao XT, Li Y, Nardelli B, Olsen HS, Morris TS, Proudfoot AE, Patel VP, Graham GJ (2000) C-C chemokine receptor 3 antagonism by the beta-chemokine macrophage inflammatory protein 4, a property strongly enhanced by an amino-terminal alanine-methionine swap. J Immunol 164:14881497.
  • 93
    Proudfoot AE, Buser R, Borlat F, Alouani S, Soler D, Offord RE, Schroder JM, Power CA, Wells TN (1999) Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J Biol Chem 274:3247832485.
  • 94
    Lu Q, Burns MC, McDevitt PJ, Graham TL, Sukman AJ, Fornwald JA, Tang X, Gallagher KT, Hunsberger GE, Foley JJ, Schmidt DB, Kerrigan JJ, Lewis TS, Ames RS, Johanson KO (2009) Optimized procedures for producing biologically active chemokines. Prot Exp Purif 65:251260.
  • 95
    Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209217.
  • 96
    Daher KA, Lehrer RI, Ganz T, Kronenberg M (1988) Isolation and characterization of human defensin cDNA clones. Proc Natl Acad Sci U S A 85:73277331.
  • 97
    Tongaonkar P, Golji AE, Tran P, Ouellette AJ, Selsted ME (2012) High fidelity processing and activation of the human alpha-defensin HNP1 precursor by neutrophil elastase and proteinase 3. PLoS One 7:e32469.
  • 98
    Li X, Leong SS (2011) A chromatography-focused bioprocess that eliminates soluble aggregation for bioactive production of a new antimicrobial peptide candidate. J Chromatogr A 1218:36543659.
  • 99
    Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260267.
  • 100
    Chen YQ, Zhang SQ, Li BC, Qiu W, Jiao B, Zhang J, Diao ZY (2008) Expression of a cytotoxic cationic antibacterial peptide in Escherichia coli using two fusion partners. Protein Expr Purif 57:303311.
  • 101
    Si LG, Liu XC, Lu YY, Wang GY, Li WM (2007) Soluble expression of active human beta-defensin-3 in Escherichia coli and its effects on the growth of host cells. Chin Med J (Engl) 120:708713.
  • 102
    Skosyrev VS, Kulesskiy EA, Yakhnin AV, Temirov YV, Vinokurov LM (2003) Expression of the recombinant antibacterial peptide sarcotoxin IA in Escherichia coli cells. Protein Expr Purif 28:350356.
  • 103
    Tay DK, Rajagopalan G, Li X, Chen Y, Lua LH, Leong SS (2011) A new bioproduction route for a novel antimicrobial peptide. Biotechnol Bioeng 108:572581.
  • 104
    Li JF, Zhang J, Zhang Z, Ma HW, Zhang JX, Zhang SQ (2010) Production of bioactive human beta-defensin-4 in Escherichia coli using SUMO fusion partner. Protein J 29:314319.
  • 105
    Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:14081425.
  • 106
    Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:19571965.
  • 107
    Li JF, Zhang J, Song R, Zhang JX, Shen Y, Zhang SQ (2009) Production of a cytotoxic cationic antibacterial peptide in Escherichia coli using SUMO fusion partner. Appl Microbiol Biotechnol 84:383388.
  • 108
    Souza IA, Cino EA, Choy WY, Cordeiro MN, Richardson M, Chavez-Olortegui C, Gomez MV, Prado MA, Prado VF (2012) Expression of a recombinant Phoneutria toxin active in calcium channels. Toxicon 60:907918.
  • 109
    Cao P, Yu J, Lu W, Cai X, Wang Z, Gu Z, Zhang J, Ye T, Wang M (2010) Expression and purification of an antitumor-analgesic peptide from the venom of Mesobuthus martensii Karsch by small ubiquitin-related modifier fusion in Escherichia coli. Biotechnol Prog 26:12401244.
  • 110
    Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu MQ (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:277281.
  • 111
    Chong S, Montello GE, Zhang A, Cantor EJ, Liao W, Xu M-Q, Benner J (1998) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res 26:51095115.
  • 112
    Morassutti C, De Amicis F, Bandiera A, Marchetti S (2005) Expression of SMAP-29 cathelicidin-like peptide in bacterial cells by intein-mediated system. Protein Expr Purif 39:160168.
  • 113
    Morassutti C, De Amicis F, Skerlavaj B, Zanetti M, Marchetti S (2002) Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett 519:141146.
  • 114
    Wang H, Meng XL, Xu JP, Wang J, Ma CW (2012) Production, purification, and characterization of the cecropin from Plutella xylostella, pxCECA1, using an intein-induced self-cleavable system in Escherichia coli. Appl Microbiol Biotechnol 94:10311039.
  • 115
    Wu WY, Miller KD, Coolbaugh M, Wood DW (2011) Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments. Protein Expr Purif 76:221228.
  • 116
    Reulen SW, van Baal I, Raats JM, Merkx M (2009) Efficient, chemoselective synthesis of immunomicelles using single-domain antibodies with a C-terminal thioester. BMC Biotechnol 9:66.
  • 117
    Kim AR, Doherty-Kirby A, Lajoie G, Rylett RJ, Shilton BH (2005) Two methods for large-scale purification of recombinant human choline acetyltransferase. Protein Expr Purif 40:107117.
  • 118
    Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FH-T (2006) Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 25:150162.
  • 119
    Melandri F, Grenier L, Plamondon L, Huskey WP, Stein RL (1996) Kinetic studies on the inhibition of isopeptidase T by ubiquitin aldehyde. Biochemistry 35:1289312900.
  • 120
    Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL (2001) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20:51875196.
  • 121
    Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9:11491159.
  • 122
    Hemelaar J, Galardy PJ, Borodovsky A, Kessler BM, Ploegh HL, Ovaa H (2003) Chemistry-based functional proteomics: mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J Proteome Res 3:268276.
  • 123
    Hemelaar J, Galardy PJ, Borodovsky A, Kessler BM, Ploegh HL, Ovaa H (2004) Chemistry-based functional proteomics: mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J Proteome Res 3:268276.
  • 124
    Dang LC, Melandri FD, Stein RL (1998) Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37:18681879.
  • 125
    Hassiepen U, Eidhoff U, Meder G, Bulber JF, Hein A, Bodendorf U, Lorthiois E, Martoglio B (2007) A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate. Anal Biochem 371:201207.
  • 126
    Orcutt SJ, Wu J, Eddins MJ, Leach CA, Strickler JE (2012) Bioluminescence assay platform for selective and sensitive detection of Ub/Ubl proteases. Biochim Biophys Acta 1823:20792086.
  • 127
    Humphries HE, Christodoulides M, Heckels JE (2002) Expression of the class 1 outer-membrane protein of Neisseria meningitidis in Escherichia coli and purification using a self-cleavable affinity tag. Protein Expr Purif 26:243248.
  • 128
    Banki MR, Wood DW (2005) Inteins and affinity resin substitutes for protein purification and scale up. Microb Cell Fact 4:32.
  • 129
    Banki MR, Feng L, Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods 2:659661.
  • 130
    Fong BA, Gillies AR, Ghazi I, LeRoy G, Lee KC, Westblade LF, Wood DW (2010) Purification of Escherichia coli RNA polymerase using a self-cleaving elastin-like polypeptide tag. Protein Sci 19:12431252.
  • 131
    Fong BA, Wu WY, Wood DW (2009) Optimization of ELP-intein mediated protein purification by salt substitution. Protein Expr Purif 66:198202.
  • 132
    Wu WY, Mee C, Califano F, Banki MR, Wood DW (2006) Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc 1:22572262.
  • 133
    Banki MR, Gerngross TU, Wood DW (2005) Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14:13871395.
  • 134
    Gillies AR, Mahmoud RB, Wood DW (2009) PHB-intein-mediated protein purification strategy. Methods Mol Biol 498:173183.
  • 135
    Wang Z, Wu H, Chen J, Zhang J, Yao Y, Chen GQ (2008) A novel self-cleaving phasin tag for purification of recombinant proteins based on hydrophobic polyhydroxyalkanoate nanoparticles. Lab Chip 8:19571962.
  • 136
    Barnard GC, McCool JD, Wood DW, Gerngross TU (2005) Integrated recombinant protein expression and purification platform based on Ralstonia eutropha. Appl Environ Microbiol 71:57355742.
  • 137
    Wang Z, Li N, Wang Y, Wu Y, Mu T, Zheng Y, Huang L, Fang X (2012) Ubiquitin-intein and SUMO2-intein fusion systems for enhanced protein production and purification. Protein Expr Purif 82:174178.
  • 138
    Shen A, Lupardus PJ, Morell M, Ponder EL, Sadaghiani AM, Garcia KC, Bogyo M (2009) Simplified, enhanced protein purification using an inducible, autoprocessing enzyme tag. PLoS One 4:e8119.
  • 139
    Mao H (2004) A self-cleavable sortase fusion for one-step purification of free recombinant proteins. Protein Expr Purif 37:253263.
  • 140
    Ruan B, Fisher KE, Alexander PA, Doroshko V, Bryan PN (2004) Engineering subtilisin into a fluoride-triggered processing protease useful for one-step protein purification. Biochemistry 43:1453914546.
  • 141
    Capon DJ, Chamow SM, Mordenti J, Marsters SA, Gregory T, Mitsuya H, Byrn RA, Lucas C, Wurm FM, Groopman JE, Broder S, Smith DH (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337:525531.
  • 142
    Strohl WR, Knight DM (2009) Discovery and development of biopharmaceuticals: current issues. Curr Opin Biotechnol 20:668672.
  • 143
    Czajkowsky DM, Hu J, Shao Z, Pleass RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4:10151028.
  • 144
    Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715725.
  • 145
    Huang C (2009) Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr Opin Biotechnol 20:692699.
  • 146
    Jazayeri JA, Carroll GJ (2008) Fc-based cytokines: prospects for engineering superior therapeutics. Bio Drugs 22:1126.
  • 147
    Beck A, Reichert JM (2011) Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs 3:415416.
  • 148
    Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:3447.
  • 149
    Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317:12611269.
  • 150
    Xiong S, Fan J, Kitazato K (2010) The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 86:805812.