• 1
    Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181203.
  • 2
    den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA (2008) Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32:321344.
  • 3
    Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168207.
  • 4
    Silver LL (2013) Viable screening targets related to the bacterial cell wall. Ann N Y Acad Sci 1277:2953.
  • 5
    Smith CA (2006) Structure, function and dynmics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640655.
  • 6
    El Zoeiby A, Sanschagrin F, Levesque RC (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:112.
  • 7
    Caminero JA, Sotgiu G, Zumla A, Migliori GB (2010) Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis 10:621629.
  • 8
    Chung BC, Zhao J, Gillespie RA, Kwon DY, Guan Z, Hong J, Zhou P, Lee SY (2013) Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 34:10121016.
  • 9
    Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208233.
  • 10
    Winn MD, Goss RJM, Kimura K-I, Bugg TDH (2010) Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 27:279304.
  • 11
    Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A, Bouhss A, Diepeveen-de Bruin M, Nguyen-Distèche M, de Kruijff B, Breukink E (2011) Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30:14251432.
  • 12
    Fay A, Meyer P, Dworkin J (2010) Interactions between late-acting proteins required for peptidoglycan synthesis during sporulation. J Mol Biol 399:547561.
  • 13
    Zhang R, Ou HY, Zhang CT (2004) DEG: a database of essential genes. Nucleic Acid Res 32:D271D272.
  • 14
    Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA 54:11331141.
  • 15
    Lovering AL, Safadi SS, Strynadka NCJ (2012) Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 81:451478.
  • 16
    Matteï P-J, Neves D, Dessen A (2010) Bridging cell wall biosynthesis and bacterial morphogenesis. Curr Opin Struct Biol 20:749766.
  • 17
    Zervosen A, Sauvage E, Frere J-M, Charlier P, Luxen A (2012) Development of new drugs for an old target—the Penicillin Binding Proteins. Molecules 17:1247812505.
  • 18
    Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller TW, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S (1969) Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166:122123.
  • 19
    Kim SY, Ju K-S, Metcalf WW, Evans BS, Kuzuyama T, van der Donk WA (2012) Different biosynthetic pathways to fosfomycin in Pseudomonas syringae and Streptomyces species. Antimicrob Agents Chemother 56:41754183.
  • 20
    Bensen DC, Rodriguez S, Nix J, Cunningham ML, Tari LW (2012) Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) from Vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Acta Crystallogr D Biol Crystallogr F68:382385.
  • 21
    Yoon H-J, Lee SJ, Mikami B, Park H-J, Yoo J, Suh SW (2008) Crystal structure of UDP-Nacetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-N-acetylglucosamine and fosfomycin. Proteins 71:10321037.
  • 22
    Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA, Duncan K (1996) Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure 15:14651474.
  • 23
    De Smet KAL, Kempsell KE, Gallagher A, Duncan K, Young DB (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145:31773184.
  • 24
    McCoy A, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of chlamydia MurA, a UDP-N-Acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185:12181228.
  • 25
    Jiang S, Gilpin ME, Attia M, Ting Y-L, Berti P (2011) Lyme disease enolpyruvyl-UDP-glcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp. Biochemistry 50:22052212.
  • 26
    Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, Muratani T, Matsumoto T, Nakahama C, Tomono K (2010) Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 35:333337.
  • 27
    Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN (2003) Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 125:1573015731.
  • 28
    Rife CL, Pharris RE, Newcomer ME, Armstrong RN (2002) Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 Å resolution by MAD phasing off the L-III edge of Tl+. J Am Chem Soc 124:1100111003.
  • 29
    Roberts AA, Sharma SV, Strankman AW, Duran SR, Rawat M, Hamilton CJ (2013) Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J 451:6979.
  • 30
    Karageorgopoulos DE, Wang R, Yu X-H, Falagas ME (2012) Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 67:255268.
  • 31
    Thompson MK, Keithly ME, Harp JM, Cook PD, Jagessar KL, Sulikowski GA, Armstrong RN (2013) Structural and chemical aspects of resistance to the antibiotic, fosfomycin, conferred by FosB from Bacillus cereus. Biochemistry 52:73507362.
  • 32
    Fillgrove KL, Pakhomova S, Schaab MR, Newcomer ME, Armstrong RN (2007) Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry 46:81108120.
  • 33
    García P, Arca P, Suárez JE (1995) Product of fosC, a gene from Pseudomonas syringae, mediates fosfomycin resistance by using ATP as cosubstrate. Antimicrob Agents Chemother 39:15691573.
  • 34
    Pakhomova S, Bartlett SG, Augustus A, Kuzuyama T, Newcomer ME (2008) Crystal structure of fosfomycin resistance kinase FomA from Streptomyces wedmorensis. J Biol Chem 283:2851828526.
  • 35
    Kobayashi S, Kuzuyama T, Seto H (2000) Characterization of the fomA and fomB gene products from Streptomyces wedmorensis, which confer fosfomycin resistance on Escherichia coli. Antimicrob Agents Chemother 44:647650.
  • 36
    Castaneda-Garcia A, Rodriguez-Rojas A, Guelfo JR, Blazquez J (2009) The glycerol-3-phosphate permease GlpT Is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol 191:69686974.
  • 37
    Santoro A, Cappello AR, Madeo M, Martello E, Iacopetta D, Dolce V (2011) Interaction of fosfomycine with the glycerol-3-phosphate transporter of Escherichia coli. Biochim Biophys Acta 1810:13231329.
  • 38
    Lemieux MJ, Huang Y, Wang DN (2005) Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli. J Electron Microsc 54(Suppl 1):i43i46.
  • 39
    Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI (2003) Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 47:28502858.
  • 40
    Sakamoto Y, Furukawa S, Ogihara H, Yamasaki M (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67:20302033.
  • 41
    Baisa G, Stabo NJ, Welch RA (2013) Characterization of Escherichia coli D-cycloserine transport and resistant mutants. J Bacteriol 195:13891399.
  • 42
    Kotnik M, Anderluh PS, Prezelj A (2007) Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. Curr Pharm Des 13:22832309.
  • 43
    Prosser GA, Carvalho LPS (2013) Kinetic mechanism and inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine. FEBS J 280:11501166.
  • 44
    Cáceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG (1997) Overexpression of the D-alanine racemase gene confers resistance do D-cycloserine in Mycobacterium smegmatis. J Bacteriol 179:50465055.
  • 45
    Feng Z, Barletta RG (2003) Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob Agents Chemother 47:283291.
  • 46
    Noda M, Matoba Y, Kumagai T, Sugiyama M (2004) Structural evidence that alanine racemase from a D-cycloserine-producing microorganism exhibits resistance to its own product. J Biol Chem 279:4615346161.
  • 47
    Chen JM, Uplekar S, Gordon SV, Cole ST (2012) A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One 7:e43467.
  • 48
    Peteroy M, Severin A, Zhao F, Rosner D, Lopatin U, Scherman H, Belanger A, Harvey B, Hatfull GF, Brennan PJ, Connell ND (2000) Characterization of a Mycobacterium smegmatis mutant that is simultaneously resistant to D-cycloserine and vancomycin. Antimicrob Agents Chemother 44:17011704.
  • 49
    Gautam A, Rishi P, Tewari R (2011) UDP-N-acetylglucosamine enoly pyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments. Appl Microbiol Biotechnol 92:211225.
  • 50
    Han H, Yang Y, Olesen SH, Becker A, Betzi S, Schönbrunn E (2010) The fungal product terreic acid is a covalent inhibitor of the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Biochemistry 49:42764282.
  • 51
    Jin BS, Han SG, Lee WK, Ryoo SW, Lee SJ, Suh SW, Yu YG (2009) Inhibitory mechanism of novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J Microbiol Biotechnol 19:15821589.
  • 52
    Baum EZ, Montenegro DA, Licata L, Turchi I, Webb GC, Foleno BD, Bush K (2001) Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Chemother 45:31823188.
  • 53
    Eschenbrug S, Priestman MA, Abdul-Latif FA, Delachaume C, Fassy F, Schönbrunn E (2005) A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J Biol Chem 280:1407014075.
  • 54
    Schonbrunn E, Eschenbrug S, Luger K, Kabsch W, Amrhein N (2000) Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc Natl Acad Sci USA 97:63456349.
  • 55
    Bronson JJ, DenBleyker KL, Falk PJ, Mate RA, Ho H-T, Pucci MJ, Snyder LB (2003) Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorg Med Chem Lett 13:873875.
  • 56
    Andres CJ, Bronson JJ, D'Andrea SV, Deshpande MS, Falke PJ, Grant-Young KA, Harte WE, Ho HT, Misco PF, Robertson JG, Stock D, Sun Y, Walsh AW (2000) 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg Med Chem Lett 10:715717.
  • 57
    Kutterer KM, Davis JM, Singh G, Yang Y, Hu W, Severin A, Rasmussen BA, Krishnamurthy G, Failli A, Katz AH (2005) 4-Alkyl and 4,4'-dialkyl 1,2-bis(4-chlorophenyl)pyrazolidine-3,5-dione derivatives as new inhibitors of bacterial cell wall biosynthesi. Bioorg Med Chem Lett 15:25272531.
  • 58
    Yang Y, Severin A, Chopra R, Krishnamurthy G, Singh G, Hu W, Keeney D, Svenson K, Petersen PJ, Labthavikul P, Shlaes DM, Rasmussen BA, Failli AA, Shumsky JS, Kutterer KM, Gilbert A, Mansour TS (2006) 3,5-dioxopyrazolidines, novel inhibitors of UDP-N- acetylenolpyruvylglucosamine reductase (MurB) with activity against gram-positive bacteria. Antimicrob Agents Chemother 50:556564.
  • 59
    Mizyed S, Oddone A, Bryczynski B, Hughes DW, Berti PJ (2005) UDP-N-acetylmuramic acid (UDP-MurNAc) is a potent inhibitor of MurA (enolpyruvyl-UDP-GlcNAc synthase). Biochemistry 44:40114017.
  • 60
    Francisco GD, Li Z, Albright JD, Eudy NH, Katz AH, Petersen PJ, Labthavikul P, Singh G, Yang Y, Rasmussen BA, Lin YI, Mansour TS (2004) Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg Med Chem Lett 14:235238.
  • 61
    Kaur N, Khokhar M, Jain V, Bharatam PV, Sandhir R, Tewari R (2013) Identification of druggable targets for Acinetobacter baumannii via subtractive genomics and plausible inhibitors for MurA and MurB. Appl Biochem Biotechnol 171:417436.
  • 62
    Zidar N, Tomasic T, Sink R, Rupnik V, Kovac A, Turk S, Patin D, Blanot D, Contreras Martel C, Dessen A, Müller Premru M, Zega A, Gobec S, Peterlin Masic L, Kikelj D (2010) Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,3-dione inhibitors of MurD ligase. J Med Chem 53:65846594.
  • 63
    Tomašić T, Kovač A, Klebe G, Blanot D, Gobec S, Kikelj D, Mašič LP (2012) Virtual screening for potential inhibitors of bacterial MurC and MurD ligases. J Mol Model 18:10631072.
  • 64
    Tomašić T, Zidar N, Rupnik V, Kovac A, Blanot D, Gobec S, Kikelj D, Masic LP (2009) Synthesis and biological evaluation of new glutamic acid-based inhibitors of MurD ligase. Bioorg Med Chem Lett 19:153157.
  • 65
    Perdih A, Wolber G, Solmajer T (2013) Molecular dynamics simulation and linear interaction energy study of D-Glu-based inhibitors of the MurD ligase. J Comput Aided Mol Des 27:723738.
  • 66
    Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S (2009) Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem 37:217222.
  • 67
    Mansour TS, Caufield CE, Rasmussen B, Chopra R, Krishnamurthy G, Morris KM, Svenson K, Bard J, Smeltzer C, Naughton S, Antane S, Yang Y, Severin A, Quagliato D, Petersen PJ, Singh G (2007) Naphthyl tetronic acids as multi-target inhibitors of bacterial peptidoglycan biosynthesis. ChemMedChem 2:14141417.
  • 68
    Perdih A, Kovac A, Wolber G, Blanot D, Gobec S, Solmajer T (2009) Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett 19:26682673.
  • 69
    Baum EZ, Crespo-Carbone SM, Foleno BD, Simon LD, Guillemont J, Macielag M, Bush K (2009) MurF inhibitors with antibacterial activity: effect on muropeptide levels. Antimicrob Agents Chemother 53:32403247.
  • 70
    Zawadzke LE, Norcia M, Desbonnet CR, Wang H, Freeman-Cook K, Dougherty TJ (2008) Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway. Assay Drug Dev Technol 6:95103.
  • 71
    Chopra I (2012) Discovery of antibacterial drugs in the 21st century. J Antimicrob Chemother 68:496505.
  • 72
    Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71109.
  • 73
    White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76:616633.
  • 74
    Favini-Stabile S, Contreras-Martel C, Thielens N, Dessen A (2013) MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ Microbiol 15:32183228.
  • 75
    Lamers RP, Cavaliari JF, Burrow LL (2013) The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One 8:e60666.
  • 76
    Silver LL (2008) Are natural products still the best source for antibacterial discovery? The bacterial entry factor. Expert Opin Drug Discov 3:487500.
  • 77
    Stryjewski ME, Barriere SL, Rubinstein E, Genter FC, Lentnek AL, Magana-Aquino M, Luna CM, Niederman MS, Torres A, Corey GR (2013) Telavancin versus vancomycin for bacteraemic hospital-acquired pneumonia. Int J Antimicrob Agents 42:367369.
  • 78
    Jafari-Saraf L, Wilson SE (2011) Telavancin, a new lipoglycopeptide antimicrobial, in complicated skin and soft tissue infections. Infect Drug Resist 4:8795.
  • 79
    Chen L, Walker D, Sun B, Hu Y, Walker S, Kahne D (2003) Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc Natl Acad Sci USA 100:56585663.
  • 80
    Pace JL, Yang G (2006) Glycopeptides: update on an old successful antibiotic class. Biochem Pharmacol 71:968980.
  • 81
    Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P (2007) Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20:79114.
  • 82
    Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425448.
  • 83
    Roper DI, Huyton T, Vagin A, Dodson G (2000) The molecular basis of vancomycin resistance in clinically relevant enterococci: crystal structure of D-alanyl-D-lactate ligase (VanA). Proc Natl Acad Sci USA 97:89218925.
  • 84
    Meziane-Cherif D, Saul FA, Haouz A, Courvalin P (2012) Structural and functional characterization of VanG d-Ala:d-Ser ligase associated with vancomycin resistance in Enterococcus faecalis. J Biol Chem 287:3758337592.
  • 85
    Edwards JS, Betts L, Frazier ML, Pollet RM, Kwong SM, Walton WG, Ballentine WK, III, Huang JJ, Habibi S, Del Campo M, Meier JL, Dervan PB, Firth N, Redinbo MR (2013) Molecular basis of antibiotic multiresistance transfer in Staphylococcus aureus. Proc Natl Acad Sci USA 110:28042809.
  • 86
    Zhanel GG, Schweizer F, Karlowsky JA (2012) Oritavancin: mechanism of action. Clin Infect Dis 54:S214S219.
  • 87
    Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagacé-Wiens PR, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2010) New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 70:859886.
  • 88
    Allen NE, Nicas TL (2003) Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev 26:511532.
  • 89
    Steiert M, Schmitz FJ (2002) Dalbavancin (Biosearch Italia/Versicor). Curr Opin Investig Drugs 3:229233.
  • 90
    Pucci MJ, Bush K (2013) Investigational antimicrobial agent of 2013. Clin Microbiol Rev 26:792821.
  • 91
    Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234258.
  • 92
    Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361385.
  • 93
    Moellering RC, Jr, Eliopoulos GM, Sentochnik DE (1989) The carbapenems: new broad spectrum beta-lactam antibiotics. J Antimicrob Chemother 24 Suppl A:17.
  • 94
    Hackenbeck R, Brückner R, Denapaite D, Maurer P (2012) Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 7:395410.
  • 95
    Maurer P, Todorova K, Sauerbier J, Hakenbeck R (2012) Mutations in Streptococcus pneumoniae penicillin-binding protein 2x: importance of the C-terminal penicillin-binding protein and serine/threonine kinase-associated domains for beta-lactam binding. Microb Drug Resist 18:314321.
  • 96
    Sauerbier J, Maurer P, Rieger M, Hakenbeck R (2012) Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol 86:692706.
  • 97
    Contreras-Martel C, Dahout-Gonzalez C, Dos Santos Martins A, Kotnik M, Dessen A (2009) PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. J Mol Biol 387:899909.
  • 98
    Contreras-Martel C, Job V, Di Guilmi AM, Vernet T, Dideberg O, Dessen A (2006) Crystal structure of Penicillin-Binding Protein 1a (PBP1a) reveals a mutational hotspot implicated in β-lactam resistance in Streptococcus pneumoniae. J Mol Biol 355:684696.
  • 99
    Job V, Carapito R, Vernet T, Dessen A, Zapun A (2008) Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity towards beta-lactams: structural insights. J Biol Chem 283:48864894.
  • 100
    Lim D, Strynadka NC (2002) Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9:870876.
  • 101
    Sauvage E, Kerff F, Fonze E, Herman R, Schoot B, Marquette JP, Taburet Y, Prevost D, Dumas J, Leonard G, Stefanic P, Coyette J, Charlier P (2002) The 2.4 Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol Life Sci 59:12231232.
  • 102
    Fedarovich A, Nicholas RA, Davies C (2010) Unusual conformation of the SXN motif in the crystal strucutre of Penicillin-Binding Protein A from Mycobacterium tuberculosis. J Mol Biol 398:5465.
  • 103
    Fedarovich A, Nicholas RA, Davies C (2012) The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. J Mol Biol 418:316330.
  • 104
    Smith JD, Kumarasiri M, Zhang W, Hesek D, Lee M, Toth M, Vakulenko S, Fisher JF, Mobashery S, Chen Y (2013) Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob Agents Chemother 57:31373146.
  • 105
    Han S, Zaniewski RP, Marr ES, Lacey BM, Tomaras AP, Evdokimov A, Miller JR, Shanmugasundaram V (2010) Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:2200222007.
  • 106
    Macheboeuf P, Fischer DS, Brown T, Jr, Zervosen A, Luxen A, Joris B, Dessen A, Schofield CJ (2007) Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nat Chem Biol 3:565569.
  • 107
    Brown TJ, Charlier P, Herman R, Schofield CJ, Sauvage E (2010) Structural basis for the interaction of lactivicins with serine beta-lactamases. J Med Chem 53:58905894.
  • 108
    Zervosen A, Lu WP, Chen Z, White RE, Demuth TP, Jr, Frère JM (2004) Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones. Antimicrob Agents Chemother 48:961969.
  • 109
    Shilabin AG, Dzhekieva L, Misra P, Jayaram B, Pratt RF (2012) 4-quinolones as noncovalent inhibitors of high molecular mass Penicillin-Binding Proteins. ACS Med Chem Lett 3:592595.
  • 110
    Contreras-Martel C, Amoroso A, Woon ECY, Zervosen A, Inglis S, Martins A, Verlaine O, Rydzik AM, Job V, Luxen A, Joris B, Schofield CJ, Dessen A (2011) Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA). ACS Chem Biol 6:943951.
  • 111
    Zervosen A, Herman R, Kerff F, Herman A, Bouillez A, Prati F, Pratt RF, Frère JM, Joris B, Luxen A, Charlier P, Sauvage E (2011) Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin-binding protein. J Am Chem Soc 133:1083910848.
  • 112
    Fedarovich A, Djordjevic KA, Swanson SM, Peterson YK, Nicholas RA, Davies C (2012) High-throughput screening for novel inhibitors of Neisseria gonorrhoeae penicillin-binding protein 2. PLoS One 7:e44918.
  • 113
    Inglis SR, Strieker M, Rydzik AM, Dessen A, Schofield CJ (2012) A boronic-acid-based probe for fluorescence polarization assays with penicillin binding proteins and β-lactamases. Anal Biochem 420:4147.
  • 114
    Filipe SR, Tomasz A (2000) Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc Natl Acad Sci USA 97:48914896.
  • 115
    Weber B, Ehlert K, Diehl A, Reichmann P, Labichinski H, Hakenbeck R (2000) The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated beta-lactam resistance. FEMS Microbiol Lett 188:8185.
  • 116
    Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M (2008) Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32:386408.
  • 117
    Berger-Bachi B, Tschierske M (1998) Role of fem factors in methicillin resistance. Drug Resist Updat 1:325335.
  • 118
    Fonvielle M, Chemama M, Villet R, Lecerf M, Bouhss A, Valéry JM, Ethève-Quelquejeu M, Arthur M (2009) Aminoacyl-tRNA recognition by the FemXWv transferase for bacterial cell wall synthesis. Nucleic Acid Res 37:15891601.
  • 119
    Koyama N, Tokura Y, Munch D, Sahl HG, Schneider T, Ikeda H, Tomoda H (2012) The nonantibiotic small molecule cyslabdan enhances the potency of β-lactams against MRSA by inhibiting pentaglycine interpeptide bridge synthesis. PLoS One 7:e48981.
  • 120
    Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR, Lamichhane G (2010) The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 16:466469.
  • 121
    Mainardi JL, Fourgeaud M, Hugonnet JE, Dubost L, Brouard JP, Ouazzani J, Rice LB, Gutmann L, Arthur M (2005) A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J Biol Chem 280:3814638152.
  • 122
    Lecoq L, Dubée V, Triboulet S, Bougault C, Huggonet JE, Arthur M, Simorre JP (2013) Structure of Enterococcus faecium L,D-transpeptidase acylated by ertapenem provides insight into the inactivation mechanism. ACS Chem Biol 8:11401146.
  • 123
    Biarrotte-Sorin S, Huggonet JE, Delfosse V, Mainardi JL, Gutmann L, Arthur M, Mayer C (2006) Crystal structure of a novel β-lactam-insensitive peptidoglycan transpeptidase. J Mol Biol 359:533538.
  • 124
    Erdemli SB, Gupta R, Bishai WR, Lamichhane G, Amzel LM, Bianchet MA (2012) Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L,D-transpeptidase 2. Structure 20:21032115.
  • 125
    Mainardi JL, Morel V, Fourgeaud M, Cremniter J, Blanot D, Legrand R, Frehel C, Arthur M, Van Heijenoort J, Gutmann L (2002) Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. J Biol Chem 277:3580135807.
  • 126
    Triboulet S, Dubée V, Lecoq L, Bougault C, Mainardi JL, Rice LB, Ethève-Quelquejeu M, Gutmann L, Marie A, Dubost L, Hugonnet JE, Simorre JP, Arthur M (2013) Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity. PLoS One 8:e67831.
  • 127
    Wilke MS, Lovering AL, Strynadka NC (2005) Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 8:525533.
  • 128
    Goffin C, Ghuysen JM (2002) Biochemistry and comparative genomics of SXXK superfamily acyltransferases offer a clue to the mycobacterial paradox. Microb Mol Biol Rev 66:702738.
  • 129
    Ambler RP (1980) The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321331.
  • 130
    Fisher JF, Meroueh SO, Mobashery S (2005) Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity. Chem Rev 105:395424.
  • 131
    Cornaglia G, Giamarellou H, Rossolini GM (2011) Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 11:381393.
  • 132
    Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969976.
  • 133
    Chen Y, Shoichet B, Bonnet R (2005) Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J Am Chem Soc 127:54235434.
  • 134
    Shimamura T, Ibuka A, Fushinobu S, Wakagi T, Ishiguro M, Ishii Y, Matsuzawa H (2002) Acyl-intermediate structures of the extended-spectrum class A beta-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin. J Biol Chem 277:4660146608.
  • 135
    Nukaga M, Mayama K, Hujer AM, Bonomo RA, Know JR (2003) Ultrahigh resolution structure of a class A beta-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. J Mol Biol 328:289301.
  • 136
    Petrella S, Ziental-Gelus N, Mayer C, Renard M, Jarlier V, Sougakoff W (2008) Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A beta-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France. Antimicrob Agents Chemother 52:37253736.
  • 137
    Lobkovsky E, Moews PC, Liu H, Zhao H, Frere JM, Knox JR (1993) Evolution of an enzyme activity: crystallographic structure at 2A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci USA 90:1125711261.
  • 138
    Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22:161182.
  • 139
    Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634640.
  • 140
    Johnson JW, Fisher JF, Mobashery S (2013) Bacterial cell wall recycling. Ann N Y Acad Sci 1277:5475.
  • 141
    Babic M, Hujer AM, Bonomo RA (2006) What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat 9:142156.
  • 142
    Poirel L, Naas T, Nordmann P (2010) Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother 54:2438.
  • 143
    Paetzel M, Danel F, de Castro L, Mosimann SC, Page MGP, Strynadka NC (2000) Crystal structure of the class D β-lactamase OXA-10. Nat Struct Mol Biol 7:918925.
  • 144
    Schneider KD, Bethel CR, Distler AM, Hujer AM, Bonomo RA, Leonard DA (2009) Mutation of the active site carboxy-lysine (K70) of OXA-1 β-lactamase results in a deacylation-deficient enzyme. Biochemistry 48:61366145.
  • 145
    Jacoby GA, Munoz-Price LS (2005) The new β-lactamases. N Engl J Med 352:380391.
  • 146
    Garau G, Bebrone C, Anne C, Galleni M, Frère JM, Dideberg O (2005) A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 345:785795.
  • 147
    Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O (2008) The three-dimensional structure of VIM-2, a Zn-ß-lactamase from Pseudomonas aeruginosa in its reduzed and oxidised form. J Mol Biol 375:604611.
  • 148
    Carfi A, Parès S, Duee E, Galleni M, Duez C, Frère JM, Dideberg O (1995) The 3-D structure of a zince metallo-beta-lactamase reveals a new type of protein fold. EMBO J 14:49144921.
  • 149
    Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 4:823836.
  • 150
    Palzkill T (2013) Metallo-b-lactamase structure and function. Ann N Y Acad Sci 1277:91104.
  • 151
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597602.
  • 152
    Nordmann P, Poirel L, Walsh TR, Livermore DM (2011) The emerging NDM carbapenemases. Trends Microbiol 19:588595.
  • 153
    Zhang H, Hao Q (2011) Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J 25:25742582.
  • 154
    Green VL, Verma A, Owens RJ, Phillips SE, Carr SB (2011) Structure of New Delhi metallo-β-lactamase 1 (NDM-1). Acta Crystallogr Sect F Struct Biol Cryst Commun 67:11601164.
  • 155
    King DT, Worrall LJ, Gruninger R, Strynadka NCJ (2012) New Delhi Metallo-β-Lactamase: structural insights into β-Lactam recognition and inhibition. J Am Chem Soc 134:1136211365.
  • 156
    Liang Z, Li L, Wang Y, Chen L, Kong X, Hong Y, Lan L, Zheng M, Guang-Yang C, Liu H, Shen X, Luo C, Li KK, Chen K, Jiang H (2011) Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One 6:e23606.
  • 157
    Thakur PK, Kumar J, Ray D, Anjum F, Hassan MI (2013) Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J Nat Sci Biol Med 4:5156.
  • 158
    Votsch W, Templin MF (2000) Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J Biol Chem 275:3903239038.
  • 159
    Cheng Q, Park JT (2002) Substrate specificity of the AmpG permease required for recycling of cell wall anhydro-muropeptides. J Bacteriol 184:64346436.
  • 160
    Avison MB, Horton RE, Walsh TR, Bennett PM (2001) Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276:2695526962.
  • 161
    Tayler AE, Ayala JA, Niumsup P, Westphal K, Baker JA, Zhang L, Walsh TR, Wiedemann B, Bennett PM, Avison MB (2010) Induction of β-lactamase production in Aeromonas hydrophila is responsive to β-lactam-mediated changes in peptidoglycan composition. Microbiology 156:23272335.
  • 162
    Zamorano L, Reeve TM, Juan C, Moya B, Cabot G, Vocadlo DJ, Mark BL, Oliver A (2011) AmpG inactivation restores susceptibility of pan-β-lactam-resistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 55:19901996.
  • 163
    Zhang Y, Bao Q, Gagnon LA, Huletsky A, Oliver A, Jin S, Langaee T (2010) ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression. Antimicrob Agents Chemother 54:47724779.
  • 164
    Stubbs KA, Balcewich M, Mark BL, Vocadlo DJ (2007) Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC-mediated beta-lactam resistance. J Biol Chem 282:2138221391.
  • 165
    Mushtaq S, Warner M, Livermore D (2010) Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters. J Antimicrob Chemother 65:266270.
  • 166
    Livermore DM, Mushtaq S, Ge Y, Warner M (2009) Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 65:19721974.