• 1
    Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:67356741.
  • 2
    Mackay CR (2001) Chemokines: immunology's high impact factors. Nat Immunol 2:95101.
  • 3
    Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787820.
  • 4
    Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42:469499.
  • 5
    Fernando H, Nagle GT, Rajarathnam K (2007) Thermodynamic characterization of interleukin-8 monomer binding to CXCR1 receptor N-terminal domain. FEBS J 274:241251.
  • 6
    Rajarathnam K, Clarklewis I, Sykes BD (1995) H-1-NMR solution structure of an active monomeric interleukin-8. Biochemistry 34:1298312990.
  • 7
    Ravindran A, Joseph PR, Rajarathnam K (2009) Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics. Biochemistry 48:87958805.
  • 8
    Daly TJ, LaRosa GJ, Dolich S, Maione TE, Cooper S, Broxmeyer HE (1995) High activity suppression of myeloid progenitor proliferation by chimeric mutants of interleukin 8 and platelet factor 4. J Biol Chem 270:2328223292.
  • 9
    Skelton NJ, Quan C, Reilly D, Lowman H (1999) Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure 7:157168.
  • 10
    Nasser MW, Raghuwanshi SK, Grant DJ, Jala VR, Rajarathnam K, Richardson RM (2009) differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J Immunol 183:34253432.
  • 11
    Burrows SD, Doyle ML, Murphy KP, Franklin SG, White JR, Brooks I, McNulty DE, Scott MO, Knutson JR, Porter D, Young PR, Hensley P (1994) Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry 33:1274112745.
  • 12
    Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 266:2312823134.
  • 13
    Ginestier C, Liu SL, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120:485497.
  • 14
    Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253:12781280.
  • 15
    Fernando H, Chin C, Rosgen J, Rajarathnam K (2004) Dimer dissociation is essential for interleukin-8 (IL-8) binding to CXCR1 receptor. J Biol Chem 279:3617536178.
  • 16
    Rajarathnam K, Prado GN, Fernando H, Clark-Lewis I, Navarro J (2006) Probing receptor binding activity of interleukin-8 dimer using a disulfide trap. Biochemistry 45:78827888.
  • 17
    Park SH, Casagrande F, Cho L, Albrecht L, Opella SJ (2011) Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy. J Mol Biol 414:194203.
  • 18
    Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A, Garofalo RP, Rajarathnam K (2010) Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. PLoS One 5:e11754.
  • 19
    Clubb RT, Omichinski JG, Clore GM, Gronenborn AM (1994) Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the type-1 human interleukin-8 receptor. FEBS Lett 338:9397.
  • 20
    Rajagopalan L, Rajarathnam K (2004) Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. J Biol Chem 279:3000030008.
  • 21
    Leong SR, Kabakoff RC, Hebert CA (1994) Complete mutagenesis of the extracellular domain of interleukin-8 (IL-8) type A receptor identifies charged residues mediating IL-8 binding and signal transduction. J Biol Chem 269:1934319348.
  • 22
    Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM, Wlodawer A (1991) Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proceedings of the National Academy of Sciences of the United States of America 88:502506.
  • 23
    Gerety SJ, Karpus WJ, Cubbon AR, Goswami RG, Rundell MK, Peterson JD, Miller SD (1994) Class II-restricted T cell responses in Theiler's murine encephalomyelitis virus-induced demyelinating disease. V. Mapping of a dominant immunopathologic VP2 T cell epitope in susceptible SJL/J mice. J Immunol 152:908918.
  • 24
    Larsson G, Martinez G, Schleucher J, Wijmenga SS (2003) Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data. J Biomol NMR 27:291312.
  • 25
    Lee D, Hilty C, Wider G, Wuthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178:7276.
  • 26
    Rossi P, Swapna GV, Huang YJ, Aramini JM, Anklin C, Conover K, Hamilton K, Xiao R, Acton TB, Ertekin A, Everett JK, Montelione GT (2010) A microscale protein NMR sample screening pipeline. J Biomol NMR 46:1122.
  • 27
    Taylor GM, Ma L, Vogt VM, Post CB (2010) NMR relaxation studies of an RNA-binding segment of the rous sarcoma virus gag polyprotein in free and bound states: a model for autoinhibition of assembly. Biochemistry 49:40064017.
  • 28
    Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:89728979.
  • 29
    Kojima C, Ono A, Kainosho M, James TL (1999) Quantitative measurement of transverse and longitudinal cross-correlation between 13C-1H dipolar interaction and 13C chemical shift anisotropy: application to a 13C-labeled DNA duplex. J Magn Reson 136:169175.
  • 30
    Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117121.
  • 31
    Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964972.
  • 32
    Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106:30553079.
  • 33
    Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:1235212360.
  • 34
    Schlegel J, Armstrong GS, Redzic JS, Zhang F, Eisenmesser EZ (2009) Characterizing and controlling the inherent dynamics of cyclophilin-A. Protein Sci 18:811824.
  • 35
    Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967975.
  • 36
    Lowman HB, Fairbrother WJ, Slagle PH, Kabakoff R, Liu J, Shire S, Hebert CA (1997) Monomeric variants of IL-8: effects of side chain substitutions and solution conditions upon dimer formation. Protein Sci 6:598608.
  • 37
    Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:1497014971.
  • 38
    Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:96159620.
  • 39
    Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu GH, Eletsky A, Wu YB, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:46854690.
  • 40
    Xue Y, Ward JM, Yuwen T, Podkorytov IS, Skrynnikov NR (2012) Microsecond time-scale conformational exchange in proteins: using long molecular dynamics trajectory to simulate NMR relaxation dispersion data. J Am Chem Soc 134:25552562.
  • 41
    Camilloni C, Robustelli P, De Simone A, Cavalli A, Vendruscolo M (2012) Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts. J Am Chem Soc 134:39683971.
  • 42
    Camilloni C, De Simone A, Vranken WF, Vendruscolo M (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51:22242231.
  • 43
    Williams MA, Cave CM, Quaid G, Robinson C, Daly TJ, Witt D, Lentsch AB, Solomkin JS (2005) Interleukin 8 dimerization as a mechanism for regulation of neutrophil adherence-dependent oxidant production. Shock 23:371376.
  • 44
    Horcher M, Rot A, Aschauer H, Besemer J (1998) IL-8 derivatives with a reduced potential to form homodimers are fully active in vitro and in vivo. Cytokine 10:112.
  • 45
    Osborne MJ, Wright PE (2001) Anisotropic rotational diffusion in model-free analysis for a ternary DHFR complex. J Biomol NMR 19:209230.
  • 46
    Cole R, Loria JP (2002) Evidence for flexibility in the function of ribonuclease A. Biochemistry 41:60726081.
  • 47
    Yao S, Young IG, Norton RS, Murphy JM (2011) Murine interleukin-3: structure, dynamics, and conformational heterogeneity in solution. Biochemistry 50:24642477.
  • 48
    Schnitzel W, Monschein U, Besemer J (1994) Monomer-dimer equilibria of interleukin-8 and neutrophil-activating peptide 2. Evidence for IL-8 binding as a dimer and oligomer to IL-8 receptor B. J Leuk Biol 55:763770.
  • 49
    Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM (1990) Three-dimensional structure of interleukin 8 in solution. Biochemistry 29:16891696.
  • 50
    Schlegel J, Redzic JS, Porter C, Yurchenko V, Bukrinsky M, Armstrong GS, Zhang FL, Isern NG, DeGregori J, Hodges R, Eisenmesser EZ (2009) Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin-A. J Mol Biol 391:518535.
  • 51
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277293.
  • 52
    Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687696.
  • 53
    Loria JP, Rance M, Palmer AG 3rd (1999) A TROSY CPMG sequence for characterizing chemical exchange in large proteins. J Biomol NMR 15:151155.
  • 54
    Camilloni C, Cavalli A, Vendruscolo M (2013) Assessment of the use of NMR chemical shifts as replica-averaged structural restraints in molecular dynamics simulations to characterize the dynamics of proteins. J Phys Chem B 117:18381843.
  • 55
    Cavalli A, Camilloni C, Vendruscolo M (2013) Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. J Chem Phys 138:094112.
  • 56
    Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845854.
  • 57
    Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comp Phys Commun 180:19611972.
  • 58
    Cavalli A, Vendruscolo M, Paci E (2005) Comparison of sequence-based and structure-based energy functions for the reversible folding of a peptide. Biophys J 88:31583166.
  • 59
    Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100:L4749.
  • 60
    Hess B (2008) P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116122.
  • 61
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:85778593.
  • 62
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101.
  • 63
    DeLano WL, Lam JW (2005) PyMOL: A communications tool for computational models. Abstr Pap Am Chem Soc 230: U1371U1372.