• chitinase;
  • chitin;
  • crystal structure;
  • plant defense;
  • mass spectrometry;
  • enzyme catalysis


Maize ChitA chitinase is composed of a small, hevein-like domain attached to a carboxy-terminal chitinase domain. During fungal ear rot, the hevein-like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization of truncated ChitA (ChitA ΔN), which lacks the hevein-like domain. ChitA ΔN and a mutant form (ChitA ΔN-EQ) were expressed and purified; enzyme assays showed that ChitA ΔN activity was comparable to the full-length enzyme. Mutation of Glu62 to Gln (ChitA ΔN-EQ) abolished chitinase activity without disrupting substrate binding, demonstrating that Glu62 is directly involved in catalysis. A crystal structure of ChitA ΔN-EQ provided strong support for key roles for Glu62, Arg177, and Glu165 in hydrolysis, and for Ser103 and Tyr106 in substrate binding. These findings demonstrate that the hevein-like domain is not needed for enzyme activity. Moreover, comparison of the crystal structure of this plant class IV chitinase with structures from larger class I and II enzymes suggest that class IV chitinases have evolved to accommodate shorter substrates.