SEARCH

SEARCH BY CITATION

References

  • Anderson DE, Lu J, Mcintosh LP, Dahlquist FW. 1993. The folding, stability and dynamics of T4 lysozyme: A perspective using nuclear magnetic resonance. In: GronenbornAM, CloreGM, eds. NMR of proteins. London: Macmillan Press. pp 258304.
  • Bai Y, Milne JS, Mayne L, Englander SW. 1993. Primary structure effects on peptide group hydrogen exchange. Proteins Struct Fund Genet 17: 7586.
  • Bax A, Ikura M, Kay LE, Zhu G. 1991. Removal of Fl baseline distortion and optimization of folding in multidimensional NMR spectra. J Magn Reson 91: 174178.
  • Billeter M, Neri D, Otting G, Qian YQ, Wüthrich K. 1992. Precise vicinal coupling constants 3JHNα in proteins from nonlinear fits of J-modulated 15N-1H COSY experiments. J Biomol NMR 2: 257274.
  • Bray MR, Clarke AJ. 1992. Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 204: 191196.
  • Burley SK, Petsko GA. 1986. Amino-aromatic interactions in proteins. FEBS Lett 203: 139143.
  • Campbell R, Rose D, Wakarchuk W, To R, Sung W, Yaguchi M. 1993. A comparison of the structures of the 20 kD xylanases from Trichoderma harzianum and Bacillus circulans. In: Suominen P, Reinikainen T, eds. Proceedings of the second TRICEL symposium on Trichoderma reesei celluloses and other hydrolases, Espoo, Finland, 1993. Helsinki: Foundation for Biotechnological and Industrial Fermentation Research. pp 6377.
  • Coughlan MP, Hazlewood GP. 1993. β-1, 4-D-Xylan-degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17: 259289.
  • Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853859.
  • Davoodi J, Wakarchuk WW, Campbell RL, Carey PR, Surewicz WK. 1995. Abnormally high pKa of an active site glutamic acid residue in Bacillus circulans xylanase. Eur J Biochem 232: 839843.
  • Englander SW, Wand AJ. 1987. Main chain directed strategy for the assignment of 1H NMR spectra of proteins. Biochemistry 26: 521526.
  • Evans S. 1993. SETOR: Hardware lighted three-dimensional solid model representations of macromolecules. J Mol Graphics 11: 134138.
  • Fesik SW, Zuiderweg ER. 1990. Heteronuclear three-dimensional NMR spectroscopy of isotopically labelled biological macromolecules. Q Rev Biophys 23: 97131.
  • Forman-Kay JD, Gronenborn AM, Kay LE, Wingfield PT, Clore GM. 1990. Studies on the solution conformation of human thioredoxin using heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Biochemistry 29: 15661572.
  • Gebler J, Gilkes NR, Claeyssens M, Wilson DB, Béguin P, Wakarchuk WW, Kilburn DG, Miller RC Jr., Warren RAJ, Withers SG. 1992. Stereoselective hydrolysis catalyzed by related β-1,4-glucanases and β-1,4-xylanases. J Biol Chem 267: 1255912561.
  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr., Warren RAJ. 1991. Domains in microbial beta-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol Rev 55: 303315.
  • Grzesiek S, Anglister J, Bax A. 1993. Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N proteins by isotropic mixing of 13C magnetization. J Magn Reson Series B 101: 114119.
  • Grzesiek S, Bax A. 1992. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114: 62916293.
  • Grzesiek S, Bax A. 1993. The importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115: 1259312594.
  • Hazlewood GP, Gilbert HJ. 1993. Molecular biology of hemicellulases. In: CoughlanMP, HazlewoodGP, eds. Hemicellulose and hemicellulases. London: Portland Press. pp 102126.
  • Henrissat B, Bairoch A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781788.
  • Ikura M, Kay LE, Bax A. 1990. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: Heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29: 46594667.
  • Jamison RS, Kakkad B, Ebert DH, Mewcomer ME, Ong DE. 1995. Test of the contribution of an amino-aromatic hydrogen bond to protein function. Biochemistry 34: 1112811132.
  • Kabsch W, Sander C. 1983. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 25772637.
  • Kay LE. 1993. Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13Cα/β, 13C', and 1Hα chemical shifts in uniformly 13C labelled proteins dissolved in H2O. J Am Chem Soc 115: 20552057.
  • Kay LE, Bax A. 1990. New methods for the measuring of NH-CoH coupling constants in 15N-labelled proteins. J Magn Reson 86: 110126.
  • Kay LE, Keifer P, Saarinen T. 1992. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114: 1066310665.
  • Kay LE, Marion D, Bax A. 1989. Practical aspects of 3D heteronuclear NMR of proteins. J Magn Reson 84: 7284.
  • Kay LE, Xu GY, Yamazaki T. 1994. Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson 109: 129133.
  • Ko EP, Akatsuka H, Moriyama H, Shinmyo A, Hata Y, Katsube Y, Urabe I, Okada H. 1992. Site-directed mutagenesis at aspartate and glutamate residues of xylanase fro Bacillus pumilus. Biochem J 288: 117121.
  • Kraulis PJ, Clore GM, Nilges M, Jones TA, Petterson G, Knowles J, Gronenborn AM. 1989. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 72417257.
  • Levitt M, Perutz MF. 1988. Aromatic rings act as hydrogen bond acceptors. J Mol Biol 201: 751754.
  • Levy GC, Lichter RL. 1979. Nitrogen-15 nuclear magnetic resonance spectroscopy. New York: J. Wiley & Sons.
  • Marion D, Ikura M, Bax A. 1989. Improved solvent suppression in one- and two-dimensional NMR spectra by convolution of time-domain data. J Magn Reson 84: 425430.
  • Mcintosh LP, Dahlquist FW. 1990. Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Quart Rev Biophys 23: 138.
  • Mcintosh LP, Wand AJ, Lowry DF, Redfield AG, Dahlquist FW. 1990. Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry 29: 63416362.
  • Meadows R, Olejniczak E, Fesik S. 1994. A computer-based protocol for semiautomated assignments and 3D structure determination of proteins. J Biomol NMR 4: 7996.
  • Miao S, Ziser L, Aebersold R, Withers SG. 1994. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry. Biochemistry 33: 70277032.
  • Mitchell JBO, Nandi CL, McDonald IK, Thornton JM, Price SL. 1994. Amino/aromatic interactions in proteins: Is the evidence stacked against hydrogen bonding? J Mol Biol 239: 315331.
  • Muhandiram D, Kay L. 1994. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 103: 203216.
  • Oh BH, Westler WM, Darba P, Markley JL. 1988. Protein carbon-13 spin systems by a single two-dimensional nuclear magnetic resonance experiment. Science 240: 908911.
  • Okada H. 1989. Tertiary structure of xylanase and estimation of active sites by site-directed mutagenesis. Adv Prot Design 12: 8186.
  • Ösapay K, Case DA. 1991. A new analysis of proton chemical shifts in proteins. J Am Chem Soc 113: 94369444.
  • Paice MG, Bourbonnais R, Desrochers M, Jurasek L, Yaguchi M. 1986. A xylanase from Bacillus subtilis: Nucleotide sequence and comparison with B. pumilus gene. Arch Microbiol 144: 201206.
  • Perutz MF, Fermi G, Abraham DJ, Poyart C, Bursaux E. 1986. Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J Am Chem Soc 108: 10641078.
  • Redfield C, Dobson CM. 1988. Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27: 122136.
  • Richarz R, Wuthrich K. 1978. Carbon-13 NMR chemical shifts of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 17: 21332141.
  • Rodham DA, Suzuki S, Suenram RD, Lovas FJ, Dasgupta S, Goddard WA, Blake GA. 1993. Hydrogen bonding in the benzene-ammonia dimer. Nature 362: 735737.
  • Santoro J, King GC. 1992. A constant-time 2D Overbodenhausen experiment for inverse correlation of isotopically enriched species. J Magn Reson 97: 202207.
  • Sinnott ML. 1990. Catalytic mechanisms of enzymic glycosyl transfer. Chem Rev 90: 11711202.
  • Spera S, Bax A. 1991. An empirical correlation between protein backbone conformation and C° and Cβ 13C NMR chemical shifts. J Am Chem Soc 113: 54905492.
  • Sung WL, Luk CK, Zahab DM, Wakarchuk W. 1993. Overexpression and purification of the Bacillus subtilis and Bacillus circulans xylanases i Escherichia coli. Prot Express Purif 4: 200216.
  • Suzuki S, Green PG, Bumgarner RE, Dasgupta S, Goddard WA, Blake GA. 1992. Benzene forms hydrogen bonds with water. Science 257: 942945.
  • Tanford C. 1961. Physical chemistry of macromolecules. New York: J. Wiley & Sons.
  • Törrönen A, Harkki A, Rouvinen J. 1994. Three-dimensional structure of endo-1,4-β-xylanase II from Trichoderma reesei: Two conformational states in the active site. EMBO J 13: 29432501.
  • Törrönen A, Rouvinen J. 1995. Structural comparison of two major endo-1,4-xylanases fro Trichoderma reesei. Biochemistry 34: 847856.
  • Tüchsen E, Woodward C. 1987. Assignment of asparagine-44 side-chain primary amide 1H NMR resonances and the peptide amide N1H resonances of glycine-37 in basic pancreatic trypsin inhibitor. Biochemistry 26: 19181925.
  • Venable R, Pastor RW. 1988. Frictional models for stochastic simulations of proteins. Biopolymers 27: 10011014.
  • Vuister G, Bax A. 1993. Quantitative J correlation: A new approach for measuring homonuclear three-bond J(HN-HA) coupling constants in 15N-enriched proteins. J Am Chem Soc 115: 77727777.
  • Vyas NK. 1991. Atomic features of protein-carbohydrate interactions. Curr Opin Struct Biol 1: 732740.
  • Wakarchuk WW, Campbell RL, Sung WL, Davoodi J, Yaguchi M. 1994a. Mutational and crystallographic analysis of the active site residues of the Bacillus circulans xylanase. Protein Sci 3: 467475.
  • Wakarchuk WW, Methot N, Lanthier P, Sung W, Seligy V, Yaguchi M, To R, Campbell R, Rose D. 1992. The 20 kD xylanase of Bacillus subtilis: A structure/function analysis. In: VisserJ, et al., eds. Xylan and xylanases. Amsterdam: Elsevier Science B.V. pp 439442.
  • Wakarchuk WW, Sung WL, Campbell RL, Cunningham A, Watson DC, Yaguchi M. 1994b. Thermostabilization of the Bacillus subtilis xylanase by the introduction of disulfide bonds. Protein Eng 7: 13791386.
  • Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M, Resh MD, Rios CB, Silverman L, Kuriyan J. 1992. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358: 646653.
  • Wider G, Wüthrich K. 1993. A simple experimental scheme using pulsed field gradients for coherence-pathway rejection and solvent suppression in phase-sensitive heteronuclear correlation spectra. J Magn Reson 102: 239241.
  • Wishart D, Sykes B, Richards FM. 1992. The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31: 16471651.
  • Wishart D, Sykes B. 1994. The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4: 171180.
  • Wittekind M, Mueller L. 1993. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances. J Magn Reson Ser B 101: 201205.
  • Wong KKY, Saddler JN. 1992. Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12: 413435.
  • Wüthrich K. 1986. NMR of proteins and nucleic acids. New York: J. Wiley & Sons.
  • Yamazaki T, Foreman-Kay JD, Kay L. 1993. Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ϵ chemical shifts of aromatic residues in 13C-labelled proteins via scalar couplings. J Am Chem Soc 115: 1105411055.
  • Zamyatnin AA. 1984. Amino acid, peptide, and protein volume in solution. Annu Rev Biophys Bioeng 13: 145165.
  • Zhang O, Kay LE, Olivier JP, Foreman-Kay JD. 1994. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domains of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR 4: 845858.
  • Zhu G, Bax A. 1992. Improved linear prediction of damped NMR signals using modified “forward-backward” linear prediction. J Magn Reson 100: 202207.