SEARCH

SEARCH BY CITATION

References

  • 1
    Kumar R, Singh S, Singh O ( 2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35: 377391.
  • 2
    Bisaria VS, Ghose TK ( 1981) Biodegradation of cellulosic materials: substrate, microorganisms, enzymes and products. Enzyme Microb Technol 3: 90104.
  • 3
    Stephanopoulous G ( 2007) Challenges in engineering microbes for biofuels production. Science 315: 801804.
  • 4
    Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA ( 1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249: 380386.
  • 5
    Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA ( 1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265: 524528.
  • 6
    Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Ståhlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA ( 1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. J Mol Biol 272: 383397.
  • 7
    Sandgren M, Ståhlberg J, Mitchinson C ( 2005) Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol 89: 246291.
  • 8
    Suominen PL, Mäntylä AL, Karhunen T, Hakola S, Nevalainen H ( 1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241: 523530.
  • 9
    Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J ( 1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51: 4352.
  • 10
    Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn, AM ( 1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 72417257.
  • 11
    Van Petegem F, Vandenberghe I, Bhat, MK, Van Beeumen J ( 2002) Atomic resolution structure of the major endoglucanase from Thermoascus aurantiacus. Biochem Biophys Res Commun 296: 161166.
  • 12
    Pereira JH, Chen Z, McAndrew RP, Sapra R, Chhabra SR, Sale KL, Simmons BA, Adams, PD ( 2010) Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. J Struct Biol 172: 372379.
  • 13
    Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA ( 1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35: 1064810660.
  • 14
    Hui JPM, White TC, Thibault P ( 2002) Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology 12: 837849.
  • 15
    Davies GJ, Mackenzie L, Varrot A, Dauter M, Brzozowski AM, Schülein M, Withers SG ( 1998) Snapshots along an enzymatic reaction coordinate: analysis of a retaining β-glycoside hydrolase. Biochemistry 37: 1170711713.
  • 16
    Medve J. Karlsson J, Lee D, Tjerneld F ( 1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59: 621634.
  • 17
    Wang Q, Graham RW, Trimbur D, Warren RAJ, Withers SG ( 1994) Changing enzymic reaction mechanisms by mutagenesis: conversion of a retaining glucosidase to an inverting enzyme. J Am Chem Soc 116: 1159411595.
  • 18
    Shaw A, Bott R, Vonrhein C, Bricogne G, Power S, Day AG ( 2002) A novel combination of two classic catalytic schemes. J Mol Biol 320: 303309.
  • 19
    Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat M ( 2001) Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem J 353: 117127.
  • 20
    Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS ( 2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23: 12701276.
  • 21
    Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y ( 2008) Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III expressed in Escherichia coli. Appl Microbiol Biotechnol 81: 681689.
  • 22
    Qin Y, Wei X, Song X, Qu Y ( 2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135: 190195.
  • 23
    Canutescu AA, Shelenkov AA, Dunbrack RL ( 2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12: 20012014.
  • 24
    Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD ( 2008) Iterative model building, structure refinement and density modification with the Phenix autobuild wizard. Acta Crystallogr Sect D 64: 6169.
  • 25
    Emsley P, Cowtan K ( 2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60: 21262132.
  • 26
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH ( 2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D 66: 213221.