SEARCH

SEARCH BY CITATION

References

  • 1
    Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE ( 2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14: 105111.
  • 2
    Jakob U, Gaestel M, Engel K, Buchner J ( 1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268: 15171520.
  • 3
    Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E ( 1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. Faseb J 13: 20612070.
  • 4
    Pivovarova AV, Chebotareva NA, Chernik IS, Gusev NB, Levitsky DI ( 2007) Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. FEBS J 274: 59375948.
  • 5
    Gusev NB, Bogatcheva NV, Marston SB ( 2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc) 67: 511519.
  • 6
    Garrido C, Gurbuxani S, Ravagnan L, Kroemer G ( 2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286: 433442.
  • 7
    Garrido C ( 2002) Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 9: 483485.
  • 8
    Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C ( 2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81: 1527.
  • 9
    Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP, Mehlen P, Solary E ( 1998) Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58: 54955499.
  • 10
    Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V ( 2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36: 602606.
  • 11
    Tang B, Liu X, Zhao G, Luo W, Xia K, Pan Q, Cai F, Hu Z, Zhang C, Chen B, Zhang F, Shen L, Zhang R, Jiang H ( 2005) Mutation analysis of the small heat shock protein 27 gene in chinese patients with Charcot-Marie-Tooth disease. Arch Neurol 62: 12011207.
  • 12
    Kijima K, Numakura C, Goto T, Takahashi T, Otagiri T, Umetsu K, Hayasaka K ( 2005) Small heat shock protein 27 mutation in a Japanese patient with distal hereditary motor neuropathy. J Hum Genet 50: 473476.
  • 13
    Aquino DA, Capello E, Weisstein J, Sanders V, Lopez C, Tourtellotte WW, Brosnan CF, Raine CS, Norton WT ( 1997) Multiple sclerosis: altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. J Neuropathol Exp Neurol 56: 664672.
  • 14
    Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A, Boelens WC, Bosman GJ, de Jong WW ( 1999) The molecular chaperone αB-crystallin enhances amyloid β neurotoxicity. Biochem Biophys Res Commun 262: 152156.
  • 15
    Renkawek K, Stege GJ, Bosman GJ ( 1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and αB-crystallin in Parkinson's disease. Neuroreport 10: 22732276.
  • 16
    Head MW, Corbin E, Goldman JE ( 1993) Overexpression and abnormal modification of the stress proteins αB-crystallin and HSP27 in Alexander disease. Am J Pathol 143: 17431753.
  • 17
    Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE ( 1993) αB-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143: 487495.
  • 18
    Kato S, Hirano A, Umahara T, Llena JF, Herz F, Ohama E ( 1992) Ultrastructural and immunohistochemical studies on ballooned cortical neurons in Creutzfeldt-Jakob disease: expression of αB-crystallin, ubiquitin and stress-response protein 27. Acta Neuropathol (Berl) 84: 443448.
  • 19
    Caspers GJ, Leunissen JA, de Jong WW ( 1995) The expanding small heat-shock protein family, and structure predictions of the conserved "α-crystallin domain". J Mol Evol 40: 238248.
  • 20
    Bova MP, McHaourab HS, Han Y, Fung BK ( 2000) Subunit exchange of small heat shock proteins. Analysis of oligomer formation of α-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275: 10351042.
  • 21
    Lelj-Garolla B, Mauk AG ( 2005) Self-association of a small heat shock protein. J Mol Biol 345: 631642.
  • 22
    Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J ( 1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274: 93789385.
  • 23
    Carver JA, Esposito G, Schwedersky G, Gaestel M ( 1995) 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Lett 369: 305310.
  • 24
    Kim KK, Kim R, Kim SH ( 1998) Crystal structure of a small heat-shock protein. Nature 394: 595599.
  • 25
    van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E ( 2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8: 10251030.
  • 26
    Stamler R, Kappe G, Boelens W, Slingsby C ( 2005) Wrapping the α-crystallin domain fold in a chaperone assembly. J Mol Biol 353: 6879.
  • 27
    Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C ( 2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392: 12421252.
  • 28
    Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D ( 2010) Crystal structures of truncated αA and αB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19: 10311043.
  • 29
    Vos MJ, Hageman J, Carra S, Kampinga HH ( 2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47: 70017011.
  • 30
    Lelj-Garolla B, Mauk AG ( 2006) Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281: 81698174.
  • 31
    Dudich IV, Zav'yalov VP, Pfeil W, Gaestel M, Zav'yalova GA, Denesyuk AI, Korpela T ( 1995) Dimer structure as a minimum cooperative subunit of small heat-shock proteins. Biochim Biophys Acta 1253: 163168.
  • 32
    Bova MP, Ding LL, Horwitz J, Fung BK ( 1997) Subunit exchange of αA-crystallin. J Biol Chem 272: 2951129517.
  • 33
    Fu X, Liu C, Liu Y, Feng X, Gu L, Chen X, Chang Z ( 2003) Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochem Biophys Res Commun 310: 412420.
  • 34
    Jiao W, Qian M, Li P, Zhao L, Chang Z ( 2005) The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. J Mol Biol 347: 871884.
  • 35
    Usui K, Hatipoglu OF, Ishii N, Yohda M ( 2004) Role of the N-terminal region of the crenarchaeal sHsp, StHsp14.0, in thermal-induced disassembly of the complex and molecular chaperone activity. Biochem Biophys Res Commun 315: 113118.
  • 36
    Bova MP, Huang Q, Ding L, Horwitz J ( 2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J Biol Chem 277: 3846838475.
  • 37
    Kundu M, Sen PC, Das KP ( 2007) Structure, stability, and chaperone function of αA-crystallin: role of N-terminal region. Biopolymers 86: 177192.
  • 38
    Liao JH, Lee JS, Chiou SH ( 2002) C-terminal lysine truncation increases thermostability and enhances chaperone-like function of porcine αB-crystallin. Biochem Biophys Res Commun 297: 309316.
  • 39
    Pasta SY, Raman B, Ramakrishna T, Rao Ch M ( 2003) Role of the conserved SRLFDQFFG region of α-crystallin, a small heat shock protein. Effect on oligomeric size, subunit exchange, and chaperone-like activity. J Biol Chem 278: 5115951166.
  • 40
    Pasta SY, Raman B, Ramakrishna T, Rao Ch M ( 2004) The IXI/V motif in the C-terminal extension of α-crystallins: alternative interactions and oligomeric assemblies. Mol Vis 10: 655662.
  • 41
    Kim SJ, Jeong DG, Chi SW, Lee JS, Ryu SE ( 2001) Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity. Nat Struct Biol 8: 459466.
  • 42
    Haslbeck M, Ignatiou A, Saibil H, Helmich S, Frenzl E, Stromer T, Buchner J ( 2004) A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J Mol Biol 343: 445455.
  • 43
    Plater ML, Goode D, Crabbe MJ ( 1996) Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J Biol Chem 271: 2855828566.
  • 44
    Theriault JR, Lambert H, Chavez-Zobel AT, Charest G, Lavigne P, Landry J ( 2004) Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 279: 2346323471.
  • 45
    Carver JA, Aquilina JA, Truscott RJ, Ralston GB ( 1992) Identification by 1H NMR spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin. FEBS Lett 311: 143149.
  • 46
    Lindner RA, Carver JA, Ehrnsperger M, Buchner J, Esposito G, Behlke J, Lutsch G, Kotlyarov A, Gaestel M ( 2000) Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur J Biochem 267: 19231932.
  • 47
    Guo Z, Cooper LF ( 2000) An N-terminal 33-amino-acid-deletion variant of hsp25 retains oligomerization and functional properties. Biochem Biophys Res Commun 270: 183189.
  • 48
    Li Y, Schmitz KR, Salerno JC, Koretz JF ( 2007) The role of the conserved COOH-terminal triad in αA-crystallin aggregation and functionality. Mol Vis 13: 17581768.
  • 49
    Studer S, Obrist M, Lentze N, Narberhaus F ( 2002) A critical motif for oligomerization and chaperone activity of bacterial α-heat shock proteins. Eur J Biochem 269: 35783586.
  • 50
    Chen J, Feige MJ, Franzmann TM, Bepperling A, Buchner J ( 2010) Regions outside the α-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization. J Mol Biol 398: 122131.
  • 51
    Haley DA, Horwitz J, Stewart PL ( 1998) The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J Mol Biol 277: 2735.
  • 52
    Haley DA, Bova MP, Huang QL, McHaourab HS, Stewart PL ( 2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298: 261272.
  • 53
    Smulders R, Carver JA, Lindner RA, van Boekel MA, Bloemendal H, de Jong WW ( 1996) Immobilization of the C-terminal extension of bovine αA-crystallin reduces chaperone-like activity. J Biol Chem 271: 2906029066.
  • 54
    Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL ( 2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci USA 107: 20072012.
  • 55
    Stromer T, Ehrnsperger M, Gaestel M, Buchner J ( 2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278: 1801518021.
  • 56
    Laue TM, Shah BD, Ridgeway TM, Pelletier SL, Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding S, Rowe A, Horton J, Eds. ( 1992) Analytical ultracentrifugation in biochemistry and polymer science. Cambridge: Royal Society of Chemistry, pp 90125.
  • 57
    Gill SC, von Hippel PH ( 1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182: 319326.
  • 58
    Goldberg RN, Kishore N, Lennen RM ( 2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31: 232370.
  • 59
    Espenson JH ( 1981) Chemical kinetics and reaction mechanisms, McGraw-Hill Book Company.