Finite theories before and after the discovery of a Higgs boson at the LHC

Authors

  • S. Heinemeyer,

    1. Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
    Search for more papers by this author
  • M. Mondrag,

    1. Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, México 01000 D.F., México
    Search for more papers by this author
  • G. Zoupanos

    Corresponding author
    1. Arnold-Sommerfeld-Center für Theoretische Physik, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
    2. Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, 80805 München, Germany
    3. Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
    • Arnold-Sommerfeld-Center für Theoretische Physik, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany

    Search for more papers by this author
    • On leave from Physics Department, National Technical University, Zografou Campus: Heroon Polytechniou 9, 15780 Zografou, Athens, Greece


Abstract

Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, based on the principle of reduction of couplings, and therefore are provided with a large predictive power. Confronting the predictions of SU(5) FUTs with the top and bottom quark masses and other low-energy experimental constraints a light Higgs-boson mass in the range Mh ∼ 121–126 GeV was predicted, in striking agreement with the recent discovery of a Higgs-like state around ∼ 125.5 GeV at ATLAS and CMS. Furthermore the favoured model, a finiteness constrained version of the MSSM, naturally predicts a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV, consistent with the non-observation of those particles at the LHC. Restricting further the best FUT's parameter space according to the discovery of a Higgs-like state and B-physics observables we find predictions for the rest of the Higgs masses and the supersymmetric particle spectrum.

Ancillary