• 1
    Yun D-J, Bressan RA, Hasegawa PM. Plant antifungal proteins. Plant Breeding Rev 1996; 14: 3988.
  • 2
    Van Loon, LC, Pierpoint WS, Boller T, Conejero V. Recommendations of naming plant pathogenesis-related proteins. Plant Mol Biol Rep 1994; 12: 245264.
  • 3
    Koiwa H, Sato F, Yamada Y. Characterization of accumulation of tobacco PR-5 proteins by IEF-immunoblot analysis. Plant Cell Physiol 1994; 35: 821827.
  • 4
    Kononowicz AK, Raghothama KG, Casas AM, Nelson DE, Liu D, Narasimhan ML, LaRosa PC, Sigh NK, Bressan RA, Hasegawa PM. Structure, regulation and function of the osmotin gene. In: CherryJH, editor. Biochemical and cellular mechanisms of stress tolerance in plants. NATO-ASI series. Berlin: Springer-Verlag; 1994. p 381414.
  • 5
    Abad LR, D'Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Hasegawa PM, Bressan RA. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 1996; 118: 1123.
  • 6
    Roberts WK, Selitrennikoff CP. Zeamatin, an antifungal protein from maize with membrane- permeabilizing activity. J Gen Microbiol 1990; 136: 17711778.
  • 7
    Yun DJ, Ibeas JI, Lee H, Coca MA, Narasimhan ML, Uesono Y, Hasegawa PM, Pardo JM, Bressan RA. Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell 1998; 1: 807817.
  • 8
    Yun DJ, Zhao Y, Pardo JM, Narasimhan ML, Damsz B, Lee H, Abad LR, D'Urzo MP, Hasegawa PM, Bressan RA. Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci U S A 1997; 94: 70827087.
  • 9
    Maggio A, Paino D'Urzo M, Abad LR, Takeda S, Hasegawa PM, Bressan RA. Large quantities of recombinant PR-5 proteins from the extracellular matrix of tobacco: rapid production of microbial- recalcitrant proteins. Plant Mol Biol Rep 1996; 14: 249260.
  • 10
    Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F. Crystal structure of tobacco PR-5d protein at 1.8 Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J Mol Biol 1999; 286: 11371145.
  • 11
    de Vos AM, Hatada M, van der Wel H, Krabbendam H, Peerdeman AF, Kim SH. Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc Natl Acad Sci U S A 1985; 82: 14061409.
  • 12
    Batalia MA, Monzingo AF, Ernst S, Roberts W, Robertus JD. The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat Struct Biol 1996; 3: 1923.
  • 13
    Slootstra JW, De Geus P, Haas H, Verrips CT, Meloen RH. Possible active site of the sweet-tasting protein thaumatin. Chem Senses 1995; 20: 535543.
  • 14
    Kaneko R, Kitabatake N. Structure–sweetness relationship in thaumatin: importance of lysine residues. Chem Senses 2001; 26: 167177.
  • 15
    Wang H, Ng TB. Isolation of an antifugal thaumatin-like protein from kiwi fruits. Phytochemistry 2002; 61: 16.
  • 16
    Kraulis P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24: 946950.
  • 17
    Nicholls A, Sharp KA, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 1991; 11: 281296.