Accurate prediction of solvent accessibility using neural networks–based regression

Authors


Abstract

Accurate prediction of relative solvent accessibilities (RSAs) of amino acid residues in proteins may be used to facilitate protein structure prediction and functional annotation. Toward that goal we developed a novel method for improved prediction of RSAs. Contrary to other machine learning–based methods from the literature, we do not impose a classification problem with arbitrary boundaries between the classes. Instead, we seek a continuous approximation of the real-value RSA using nonlinear regression, with several feed forward and recurrent neural networks, which are then combined into a consensus predictor. A set of 860 protein structures derived from the PFAM database was used for training, whereas validation of the results was carefully performed on several nonredundant control sets comprising a total of 603 structures derived from new Protein Data Bank structures and had no homology to proteins included in the training. Two classes of alternative predictors were developed for comparison with the regression-based approach: one based on the standard classification approach and the other based on a semicontinuous approximation with the so-called thermometer encoding. Furthermore, a weighted approximation, with errors being scaled by the observed levels of variability in RSA for equivalent residues in families of homologous structures, was applied in order to improve the results. The effects of including evolutionary profiles and the growth of sequence databases were assessed. In accord with the observed levels of variability in RSA for different ranges of RSA values, the regression accuracy is higher for buried than for exposed residues, with overall 15.3–15.8% mean absolute errors and correlation coefficients between the predicted and experimental values of 0.64–0.67 on different control sets. The new method outperforms classification-based algorithms when the real value predictions are projected onto two-class classification problems with several commonly used thresholds to separate exposed and buried residues. For example, classification accuracy of about 77% is consistently achieved on all control sets with a threshold of 25% RSA. A web server that enables RSA prediction using the new method and provides customizable graphical representation of the results is available at http://sable.cchmc.org. Proteins 2004. © 2004 Wiley-Liss, Inc.

Ancillary