SEARCH

SEARCH BY CITATION

Keywords:

  • protein–drug-binding sites;
  • protein–drug interactions;
  • protein surface cavities;
  • molecular recognition;
  • molecular surface patches;
  • protein function

Abstract

In this article we introduce a new method for the identification and the accurate characterization of protein surface cavities. The method is encoded in the program SCREEN (Surface Cavity REcognition and EvaluatioN). As a first test of the utility of our approach we used SCREEN to locate and analyze the surface cavities of a nonredundant set of 99 proteins cocrystallized with drugs. We find that this set of proteins has on average about 14 distinct cavities per protein. In all cases, a drug is bound at one (and sometimes more than one) of these cavities. Using cavity size alone as a criterion for predicting drug-binding sites yields a high balanced error rate of 15.7%, with only 71.7% coverage. Here we characterize each surface cavity by computing a comprehensive set of 408 physicochemical, structural, and geometric attributes. By applying modern machine learning techniques (Random Forests) we were able to develop a classifier that can identify drug-binding cavities with a balanced error rate of 7.2% and coverage of 88.9%. Only 18 of the 408 cavity attributes had a statistically significant role in the prediction. Of these 18 important attributes, almost all involved size and shape rather than physicochemical properties of the surface cavity. The implications of these results are discussed. A SCREEN Web server is available at http://interface.bioc.columbia.edu/screen. Proteins 2006. © 2006 Wiley-Liss, Inc.