Get access

PIPER: An FFT-based protein docking program with pairwise potentials

Authors

  • Dima Kozakov,

    1. Department of Biomedical Engineering, Boston University, Boston, Massachusetts
    Search for more papers by this author
    • The first two authors contributed equally to this article

  • Ryan Brenke,

    1. Program in Bioinformatics, Boston University, Boston, Massachusetts
    Search for more papers by this author
    • The first two authors contributed equally to this article

  • Stephen R. Comeau,

    1. Program in Bioinformatics, Boston University, Boston, Massachusetts
    Search for more papers by this author
  • Sandor Vajda

    Corresponding author
    1. Department of Biomedical Engineering, Boston University, Boston, Massachusetts
    2. Program in Bioinformatics, Boston University, Boston, Massachusetts
    • Department of Biomedical Engineering, Boston University, 44 Cummington street, Boston, MA 02215
    Search for more papers by this author

Abstract

The Fast Fourier Transform (FFT) correlation approach to protein–protein docking can evaluate the energies of billions of docked conformations on a grid if the energy is described in the form of a correlation function. Here, this restriction is removed, and the approach is efficiently used with pairwise interaction potentials that substantially improve the docking results. The basic idea is approximating the interaction matrix by its eigenvectors corresponding to the few dominant eigenvalues, resulting in an energy expression written as the sum of a few correlation functions, and solving the problem by repeated FFT calculations. In addition to describing how the method is implemented, we present a novel class of structure-based pairwise intermolecular potentials. The DARS (Decoys As the Reference State) potentials are extracted from structures of protein–protein complexes and use large sets of docked conformations as decoys to derive atom pair distributions in the reference state. The current version of the DARS potential works well for enzyme–inhibitor complexes. With the new FFT-based program, DARS provides much better docking results than the earlier approaches, in many cases generating 50% more near-native docked conformations. Although the potential is far from optimal for antibody–antigen pairs, the results are still slightly better than those given by an earlier FFT method. The docking program PIPER is freely available for noncommercial applications. Proteins 2006. © 2006 Wiley-Liss, Inc.

Ancillary