Get access

Photoinduced fibrils formation of chicken egg white lysozyme under native conditions

Authors

  • Jin-Bing Xie,

    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author
  • Yi Cao,

    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author
  • Hai Pan,

    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author
  • Meng Qin,

    Corresponding author
    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    • National Laboratory of Solid State, Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author
  • Zhi-Qiang Yan,

    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author
  • Xiang Xiong,

    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author
  • Wei Wang

    Corresponding author
    1. National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    • National Laboratory of Solid State, Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China
    Search for more papers by this author

Abstract

Recent findings showed that transiently accessing structurally native-like yet energetically higher conformational states is sufficient to trigger the formation of protein fibrils. Typically, these conformational states are made available through changing solvent conditions or introducing mutations. Here we show a novel way to initialize fibril formation for Chicken egg white lysozyme (CEWL) under native conditions via controlled UV illumination. Through a cassette of tryptophan-based photochemistry, the two terminal disulfide bonds in CEWL can be selectively reduced. The reduced CEWL is then converted to conformational states with the C-terminal fragment floppy upon thermal fluctuation. These states serve as precursors for the fibrillar aggregation. Intriguingly, the CEWL fibrils are stabilized by intermolecular disulfide bonds instead of noncovalent β-sheet structures, distinct from the amyloid-like lysozyme fibrils reported before. Based on the experimental evidences and all-atom molecular dynamics simulation, we proposed a “runaway domain-swapping” model for the structure of the CEWL fibrils, in which each CEWL molecule swaps the C-terminal fragment into the complementary position of the adjacent molecule along the fibrils. We anticipate that this fibrillation mechanism can be extended to many other disulfide-containing proteins. Our study stands for the first example of formation of protein fibrils under native conditions upon UV illumination and poses the potential danger of low UV dose to organisms at the protein level. Proteins 2012. © 2012 Wiley Periodicals, Inc.

Get access to the full text of this article

Ancillary