All-atom and coarse-grained simulations of the forced unfolding pathways of the SNARE complex

Authors

  • Wenjun Zheng

    Corresponding author
    1. Department of Physics, University at Buffalo, State University of New York, New York
    • Correspondence to: Wenjun Zheng, Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260. E-mail: wjzheng@buffalo.edu

    Search for more papers by this author

ABSTRACT

The SNARE complex, consisting of three proteins (VAMP2, syntaxin, and SNAP-25), is thought to drive membrane fusion by assembling into a four-helix bundle through a zippering process. In support of the above zippering model, a recent single-molecule optical tweezers experiment by Gao et al. revealed a sequential unzipping of SNARE along VAMP2 in the order of the linker domain → the C-terminal domain → the N-terminal domain. To offer detailed structural insights to this unzipping process, we have performed all-atom and coarse-grained steered molecular dynamics (sMD) simulations of the forced unfolding pathways of SNARE using different models and force fields. Our findings are summarized as follows: First, the sMD simulations based on either an all-atom force field (with an implicit solvent model) or a coarse-grained Go model were unable to capture the forced unfolding pathway of SNARE as observed by Gao et al., which may be attributed to insufficient simulation time and inaccurate force fields. Second, the sMD simulations based on a reparameterized coarse-grained model (i.e., modified elastic network model) were able to predict a sequential unzipping of SNARE in good agreement with the findings by Gao et al. The key to this success is to reparameterize the intrahelix and interhelix nonbonded force constants against the pair-wise residue–residue distance fluctuations collected from all-atom MD simulations of SNARE. Therefore, our finding supports the importance of accurately describing the inherent dynamics/flexibility of SNARE (in the absence of force), in order to correctly simulate its unfolding behaviors under force. This study has established a useful computational framework for future studies of the zippering function of SNARE and its perturbations by point mutations with amino-acid level of details, and more generally the forced unfolding pathways of other helix bundle proteins. Proteins 2014; 82:1376–1386. © 2014 Wiley Periodicals, Inc.

Ancillary