SEARCH

SEARCH BY CITATION

References

  • Alcalay RN, Giladi E, Pick CG, Gozes I (2004). Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett 361: 128131.
  • Badiola N, de Oliveira RM, Herrera F, Guardia-Laguarta C, Goncalves SA, Pera M, et al. (2011). Tau enhances alpha-synuclein aggregation and toxicity in cellular models of synucleinopathy. PLoS One 6: e26609.
  • Bassan M, Zamostiano R, Davidson A, Pinhasov A, Giladi E, Perl O, et al. (1999). Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem 72: 12831293.
  • Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al. (2014). Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13: 676685.
  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24: 197211.
  • Chesselet MF, Richter F (2011). Modelling of Parkinson's disease in mice. Lancet Neurol 10: 11081118.
  • Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR (2012). A progressive mouse model of Parkinson's disease: the Thy1-aSyn (“Line 61”) mice. Neuroherapeutics 9: 297314.
  • Divinski I, Mittelman L, Gozes I (2004). A femtomolar acting octapeptide interacts with tubulin and protects astrocytes against zinc intoxication. J Biol Chem 279: 2853128538.
  • Divinski I, Holtser-Cochav M, Vulih-Schultzman I, Steingart RA, Gozes I (2006). Peptide neuroprotection through specific interaction with brain tubulin. J Neurochem 98: 973984.
  • Duka T, Rusnak M, Drolet RE, Duka V, Wersinger C, Goudreau JL, et al. (2006). Alpha-synuclein induces hyperphosphorylation of Tau in the MPTP model of parkinsonism. FASEB J 20: 23022312.
  • Duka T, Duka V, Joyce JN, Sidhu A (2009). Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau phosphorylation in Parkinson's disease models. FASEB J 23: 28202830.
  • Efron B, Tibshirani R (1991). Statistical data analysis in the computer age. Science 253: 390395.
  • Esteves AR, Gozes I, Cardoso SM (2014). The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochim Biophys Acta 1842: 721.
  • Fernagut PO, Hutson CB, Fleming SM, Tetreaut NA, Salcedo J, Masliah E, et al. (2007). Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 61: 9911001.
  • Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, et al. (2004). Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24: 94349440.
  • Fleming SM, Salcedo J, Hutson CB, Rockenstein E, Masliah E, Levine MS, et al. (2006). Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 142: 12451253.
  • Fleming SM, Tetreault NA, Mulligan CK, Hutson CB, Masliah E, Chesselet MF (2008). Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 28: 247256.
  • Fleming SM, Mulligan CK, Richter F, Mortazavi F, Lemesre V, Frias C, et al. (2011). A pilot trial of the microtubule-interacting peptide (NAP) in mice overexpressing alpha-synuclein shows improvement in motor function and reduction of alpha-synuclein inclusions. Mol Cell Neurosci 46: 597606.
  • Gozes I, Divinski I (2004). The femtomolar-acting NAP interacts with microtubules: novel aspects of astrocyte protection. J Alzheimers Dis 6: S37S41.
  • Gozes I, Divinski I (2007). NAP, a neuroprotective drug candidate in clinical trials, stimulates microtubule assembly in the living cell. Curr Alzheimer Res 4: 507509.
  • Gozes I, Giladi E, Pinhasov A, Bardea A, Brenneman DE (2000). Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 293: 10911098.
  • Gozes I, Morimoto BH, Tiong J, Fox A, Sutherland K, Dangoor D, et al. (2005). NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Rev 11: 353368.
  • Haehner A, Hummel T, Reichmann H (2014). A clinical approach towards smell loss in Parkinson's disease. J Parkinsons Dis 4: 189195.
  • Haggerty T, Credle J, Rodriguez O, Wills J, Oaks AW, Masliah E, et al. (2011). Hyperphosphorylated Tau in an alpha-synuclein-overexpressing transgenic model of Parkinson's disease. Eur J Neurosci 33: 15981610.
  • Hickey MA, Gallant K, Gross GG, Levine MS, Chesselet MF (2005). Early behavioral deficits in R6/2 mice suitable for use in preclinical drug testing. Neurobiol Dis 20: 111.
  • Idan-Feldman A, Schirer Y, Polyzoidou E, Touloumi O, Lagoudaki R, Grigoriadis NC, et al. (2011). Davunetide (NAP) as a preventative treatment for central nervous system complications in a diabetes rat model. Neurobiol Dis 44: 327339.
  • Jaramillo DE, Arriola A, Safavi K, Chavez de Paz LE (2012). Decreased bacterial adherence and biofilm growth on surfaces coated with a solution of benzalkonium chloride. J Endod 38: 821825.
  • Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999). alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274: 2548125489.
  • Jouroukhin Y, Ostritsky R, Gozes I (2012). D-NAP prophylactic treatment in the SOD mutant mouse model of amyotrophic lateral sclerosis: review of discovery and treatment of tauopathy. J Mol Neurosci 48: 597602.
  • Jouroukhin Y, Ostritsky R, Assaf Y, Pelled G, Giladi E, Gozes I (2013). NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol Dis 56: 7994.
  • Kaul T, Credle J, Haggerty T, Oaks AW, Masliah E, Sidhu A (2011). Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease. BMC Neurosci 12: 79.
  • Lam HA, Wu N, Cely I, Kelly RL, Hean S, Richter F, et al. (2011). Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human alpha-synuclein. J Neurosci Res 89: 10911102.
  • Leker RR, Teichner A, Grigoriadis N, Ovadia H, Brenneman DE, Fridkin M, et al. (2002). NAP, a femtomolar-acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke 33: 10851092.
  • Matsuoka Y, Gray AJ, Hirata-Fukae C, Minami SS, Waterhouse EG, Mattson MP, et al. (2007). Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J Mol Neurosci 31: 165170.
  • Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF, et al. (2008). A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer's disease. J Pharmacol Exp Ther 325: 146153.
  • Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, et al. (2013). Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry. doi: 10.1038/mp.2013.174. [Epub ahead of print]
  • Morimoto BH, de Lannoy I, Fox AW, Gozes I, Stewart AJ (2009). Davunetide: pharmacokinetics and distribution to brain after intravenous or intranasal administration to rat. Chimica Oggi 27: 1620.
  • Morimoto BH, Fox AW, Stewart AJ, Gold M (2013). Davunetide: a review of safety and efficacy data with a focus on neurodegenerative diseases. Expert Rev Clin Pharmacol 6: 483502.
  • Morris M, Koyama A, Masliah E, Mucke L (2011). Tau reduction does not prevent motor deficits in two mouse models of Parkinson's disease. PLoS One 6: e29257.
  • Oz S, Ivashko-Pachima Y, Gozes I (2012). The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PLoS One 7: e51458.
  • Quraishe S, Cowan CM, Mudher A (2013). NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Mol Psychiatry 18: 834842.
  • Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, et al. (2002). Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68: 568578.
  • Shiryaev N, Jouroukhin Y, Giladi E, Polyzoidou E, Grigoriadis NC, Rosenmann H, et al. (2009). NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol Dis 34: 381388.
  • Shiryaev N, Pikman R, Giladi E, Gozes I (2011). Protection against tauopathy by the drug candidates NAP (davunetide) and D-SAL: biochemical, cellular and behavioral aspects. Curr Pharm Des 17: 26032612.
  • Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. (2009). Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41: 13081312.
  • Taniguchi T, Doe N, Matsuyama S, Kitamura Y, Mori H, Saito N, et al. (2005). Transgenic mice expressing mutant (N279K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation. FEBS Lett 579: 57045712.
  • Vulih-Shultzman I, Pinhasov A, Mandel S, Grigoriadis N, Touloumi O, Pittel Z, et al. (2007). Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J Pharmacol Exp Ther 323: 438449.
  • Wang L, Fleming SM, Chesselet MF, Tache Y (2008). Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. NeuroReport 19: 873876.
  • Wang L, Magen I, Yuan PQ, Subramaniam SR, Richter F, Chesselet MF, et al. (2012). Mice overexpressing wild-type human alpha-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol Motil 24: e425e436.
  • Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, et al. (2012). Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237: 318334.
  • Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A (2010). Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson's disease brains with and without dementia. Exp Neurol 225: 210218.
  • Wills J, Credle J, Haggerty T, Lee JH, Oaks AW, Sidhu A (2011). Tauopathic changes in the striatum of A53T alpha-synuclein mutant mouse model of Parkinson's disease. PLoS One 6: e17953
  • Zemlyak I, Sapolsky R, Gozes I (2009). NAP protects against cytochrome c release: inhibition of the initiation of apoptosis. Eur J Pharmacol 618: 914.
  • Zhu C, Richter F, Hutson C, Subramaniam S, Franich N, Masliah E, et al. (2011) Brain region specific histopathological alterations in mice overexpressing wild-type human alpha-synuclein under the Thy1 promoter. Program No 35719 2011 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, 2011 Online. Available at: http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=154fe491-97d2-4b4b-a5a9-12223b09458f&cKey=4d6faeff-5da4-4699-b41e-bd088a799084&mKey=%7b8334BE29-8911-4991-8C31-32B32DD5E6C8%7d