Conservation of natural enemies in cotton: comparative selectivity of acetamiprid in the management of Bemisia tabaci


  • This article presents the results of research only. Mention of a proprietary product does not constitute endorsement or recommendation for its use by USDA

  • This article is a US Government work and is in the public domain in the USA


The integrated control concept emphasizes the importance of both chemical and biological control for pest suppression in agricultural systems. A two-year field study was conducted to evaluate the selectivity of acetamiprid for the control of Bemisia tabaci (Gennadius) in cotton compared with a proven selective regime based on the insect growth regulators (IGRs) pyriproxyfen and buprofezin. Acetamiprid was highly effective in controlling all stages of B tabaci compared with an untreated control, and generally produced lower pest densities than the IGR regime. Univariate analyses indicated that nine of 17 taxa of arthropod predators were significantly depressed with the use of acetamiprid compared with an untreated control, including common species such as Geocoris punctipes (Say), Orius tristicolor (White), Chrysoperla carnea Stephens sensu lato, Collops vittatus (Say), Hippodamia convergens Guérin-Méneville, and Drapetis nr divergens. Compared with results from independent, concurrent studies using mixtures of broad-spectrum insecticides at the same research site, acetamiprid depressed populations of fewer predator taxa; but, for eight predator taxa significantly affected by both regimes, the average population reduction was roughly equal. In contrast, only four taxa were significantly reduced in the IGR regime compared with the untreated control and three of these were omnivores that function primarily as plant pests. Principal response curves analyses (a time-dependent, multivariate ordination method) confirmed these patterns of population change for the entire predator community. Predator:prey ratios generally increased with the use of both IGRs and acetamiprid compared with an untreated control, but ratios were consistently higher with IGRs. Parasitism by aphelinid parasitoids was unaffected or depressed slightly in all insecticide regimes compared with the control. Because of its high efficacy, acetamiprid may play an important role in later stages of B tabaci control where less emphasis is placed on selectivity. However, our results suggest that acetamiprid would be a poor substitute for the currently used IGRs in the initial stage of control where insecticide selectivity is crucial to a functional integrated control program for B tabaci in cotton. Published in 2005 for SCI by John Wiley & Sons, Ltd.