• rice paddy field;
  • pesticide;
  • monitoring;
  • watershed;
  • best management practice;
  • uncertainty;
  • Monte Carlo


Rice pesticide concentrations in surface water along with hydrological balance and water management conditions were investigated in a paddy watershed of about 100 ha at the Sakura river basin in Tsukuba, Japan, for 3 years from April 2002. Monitoring on different hydrological scales ranging from a paddy plot up to a watershed determined the importance of water management associated with rainfall events and the cyclic irrigation for reducing pesticide discharge into aquatic environments. Surface drainage significantly increased as a response to rainfall events greater than about 1.5 cm day−1. A total of 16 herbicides were detected in the stream water and their peak concentrations mostly occurred from early to mid-May following the pesticide application period. Two water management factors influencing the pesticide runoff from paddy fields were defined: excess water storage capacity (EWSC) and water holding period (WHP). Uncertainty analyses of pesticide discharge from a paddy plot for dymron (daimuron) and imazosulfuron (IMS) were performed using Monte Carlo simulation (MCS) with prescribed probability of rainfall and water management practice from observations over a period of 3 years. Application of an intermittent irrigation scheme with shallow water depth practice and high drainage gate to maintain the EWSC > 2 cm and increasing WHP from the current Japanese Agricultural Chemicals Regulation law of 3–4 days to at least 10 days were recommended for reducing the pesticide runoff from paddy fields in a monsoon region such as in Japan. The combination of good water management in field plots and small-scale water cycling is the best management practice for controlling pesticide discharge from paddy watersheds. Copyright © 2006 Society of Chemical Industry