Risk posed to honeybees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers



In a greenhouse metabolism study, sunflowers were seed-treated with radiolabelled imidacloprid in a 700 g kg−1 WS formulation (Gaucho® WS 70) at 0.7 mg AI per seed, and the nature of the resulting residues in nectar and pollen was determined. Only the parent compound and no metabolites were detected in nectar and pollen of these seed-treated sunflower plants (limit of detection <0.001 mg kg−1). In standard LD50 laboratory tests, imidacloprid showed high oral toxicity to honeybees (Apis mellifera), with LD50 values between 3.7 and 40.9 ng per bee, corresponding to a lethal food concentration between 0.14 and 1.57 mg kg−1. The residue level of imidacloprid in nectar and pollen of seed-treated sunflower plants in the field was negligible. Under field-growing conditions no residues were detected (limit of detection: 0.0015 mg kg−1) in either nectar or pollen. There were also no detectable residues in nectar and pollen of sunflowers planted as a succeeding crop in soils which previously had been cropped with imidacloprid seed-treated plants.

Chronic feeding experiments with sunflower honey fortified with 0.002, 0.005, 0.010 and 0.020 mg kg−1 imidacloprid were conducted to assess potential long-term adverse effects on honeybee colonies. Testing end-points in this 39-day feeding study were mortality, feeding activity, wax/comb production, breeding performance and colony vitality. Even at the highest test concentration, imidacloprid showed no adverse effects on the development of the exposed bee colonies. This no-adverse-effect concentration of 0.020 mg kg−1 compares with a field residue level of less than 0.0015 mg kg−1 ( =  limit of detection in the field residue studies) which clearly shows that a sunflower seed dressing with imidacloprid poses no risk to honeybees. This conclusion is confirmed by observations made in more than 10 field studies and several tunnel tests.

© 2001 Society of Chemical Industry