• 1
    Becker MN and Moyer RW, Subfamily Entomopoxvirinae, in Poxviruses, ed. by Mercer AM, Schmidt A and Weber O. Birkhauser Verlag, Basel, Switzerland, pp. 253271 (2007).
  • 2
    Lawrence PO and Dillard B, A homolog of the vaccinia virus D13L rifampicin resistance gene is in the entomopoxvirus of the parasitic wasp, Diachasmimorpha longicaudata. J Insect Sci 8:Article 8 (2008).
  • 3
    Gauthier L, Cousserans F, Veyrunes JC and Bergoin M, The Melolontha melolontha entomopoxvirus (MmEPV) fusolin is related to the fusolins of lepidopteran EPVs and to the 37 K baculovirus glycoprotein. Virology 208:427436 (1995).
  • 4
    Mitsuhashi W, Recent advances in studies for the application of a protein produced by entomopoxviruses (Poxviridae) for insect-pest control. JARQ 43:289294 (2009).
  • 5
    Arif BM, Recent advances in the molecular biology of entomopoxviruses. J Gen Virol 76:113 (1995).
  • 6
    Chakraborty M, Narayanan K and Sivaprakash MK, In vivo enhancement of nucleopolyhedrovirus of oriental armyworm, Mythimna separata, using spindles from Helicoverpa armigera entomopoxvirus. Indian J Exp Biol 42:121123 (2004).
  • 7
    Mitsuhashi W, Furuta Y and Sato M, The spindles of an entomopoxvirus of Coleoptera (Anomala cuprea) strongly enhance the infectivity of a nucleopolyhedrovirus in Lepidoptera (Bombyx mori). J Invertebr Pathol 71:186188 (1998).
  • 8
    Mitsuhashi W, Sato M and Hirai Y, Involvement of spindles of an entomopoxvirus (EPV) in infectivity of the EPVs to their host insect. Arch Virol 145:14651471 (2000).
  • 9
    Wijonarko A and Hukuhara T, Detection of a virus enhancing factor in the spheroid, spindle, and virion of an entomopoxvirus. J Invertebr Pathol 72:8286 (1998).
  • 10
    Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, et al, Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. J Virol 81:42354243 (2007).
  • 11
    Mitsuhashi W and Miyamoto K, Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol 82:3440 (2003).
  • 12
    Wang P and Granados RR, Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47:110118 (2001).
  • 13
    Black BC, Brennan LA, Dierks PM and Gard IE, Commercialization of baculoviral insecticides, in The Baculoviruses, ed. by Miller LK. Plenum, New York, NY, pp. 341387 (1997).
  • 14
    Liu X, Ma X, Lei C, Xiao Y, Zhang Z and Sun X, Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and lethality of Bacillus thuringiensis. Arch Virol 156:17071715 (2011).
  • 15
    Tanada Y and Kaya H, Insect Pathology. Academic Press, New York, NY (1993).
  • 16
    Federici BA, Baculovirus pathogenesis, in The Baculoviruses, ed. by Miller LK. Plenum, New York, NY, pp. 3359 (1997).
  • 17
    Hukuhara T, Insect Pathology (in Japanese). Japan Scientific Societies Press, Tokyo, Japan (1979).
  • 18
    Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W and Moyer RW, Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 274:120139 (2000).
  • 19
    Goodwin RH and Roberts RJ, Diagnosis and infectivity of entomopoxviruses from three Australian scarab beetle larvae (Coleoptera: Scarabaeidae). J Invertebr Pathol 25:4757 (1975).
  • 20
    Smith IRL and Crook N, In vivo isolation of baculovirus genotypes. Virology 166:240244 (1988).
  • 21
    Katagiri K, Kushida T, Kasuga S and Ohba M, An entomopoxvirus disease of the cupreous chafer, Anomala cuprea Hope (in Japanese with English summary). Jap J Appl Entomol Zool 19:243252 (1975).
  • 22
    Furuta Y, Mitsuhashi W, Kobayashi J, Hayasaka S, Imanishi S, Chinzei Y, et al, Peroral infectivity of non-occluded viruses of Bombyx mori nucleopolyhedrovirus and polyhedrin-negative recombinant baculoviruses to silkworm larvae is drastically enhanced when administered with Anomala cuprea entomopoxvirus spindles. J Gen Virol 82:307312 (2001).
  • 23
    Derksen ACG and Granados RR, Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology 167:242250 (1988).
  • 24
    Robert PH, Étude en laboratoire de l'influence du stade larvaire, de la quantité de virus et de la température sur la virose a Vagoiavirus de Melolontha melolontha L. (Coléopt. Scarabaeidae). Ann Zool Ecol Anim 1:289307 (1969).
  • 25
    Hayakawa T, Shitomi Y, Miyamoto K and Hori H, GalNAc pretreatment inhibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori. FEBS Lett 576:331335 (2004).
  • 26
    Rees JS, Jarrett P and Ellar DJ, Peritrophic membrane contribution to Bt Cry δ-endotoxin susceptibility in Lepidoptera and the effect of Calcofluor. J Invertebr Pathol 100:139146 (2009).
  • 27
    Takemoto Y, Mitsuhashi W, Murakami R, Konishi H and Miyamoto K, The N-terminal region of an entomopoxvirus fusolin is essential for the enhancement of peroral infection, whereas the C-terminal region is eliminated in digestive juice. J Virol 82:12 40612 415 (2008).
  • 28
    Li C, Yang K, Wang L, Yin C, Gong Y and Pang Y, Characterization of a chitin-binding protein GP37 of Spodoptera litura multicapsid nucleopolyhedrovirus. Virus Res 96:113122 (2003).
  • 29
    Mochida O and Honma K, Anomala cuprea (Hope), in Agricultural Insects in Japan (in Japanese), ed. by Umeya K and Okada T. Zenkoku-Nouson-Kyouiku-Kyoukai, Tokyo, Japan, pp. 104105 (2003).